上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (01): 135-140.
• 能源与动力工程 • 上一篇
陈彦君,李元阳,刘振华
收稿日期:
2014-01-08
基金资助:
国家重点基础研究发展规划(973)项目( 2013CB228303)
CHEN Yanjun,LI Yuanyang,LIU Zhenhua
Received:
2014-01-08
摘要:
摘要: 在考虑固-液接触角影响的半理论沸腾换热模型的基础上,将沸腾换热特性表达为过热度、固-液接触角和物性参数的函数;通过图解法推导出考虑固-液接触角影响的沸腾换热特性的预测关系式;利用无壁面毛细力影响的平坦金属表面或金属表面镀膜加热面在不同饱和压力条件下的饱和水实验数据,获得了适用于不同饱和压力和
中图分类号:
陈彦君,李元阳,刘振华. 固-液接触角对池内核态沸腾换热特性的影响[J]. 上海交通大学学报(自然版), 2015, 49(01): 135-140.
CHEN Yanjun,LI Yuanyang,LIU Zhenhua. Effect of Contact Angle on Nucleate Pool Boiling Heat Transfer[J]. Journal of Shanghai Jiaotong University, 2015, 49(01): 135-140.
[1]Pioro L S, Pioro I L. Industrial twophase thermosyphons: Chapter 2[M]. New York: Begell House, 1997. [2]Kutateladze S S. Heat transfer in condensation and boiling[M]. USA: AEC Rep, 1952. [3]Rohsenow W M. A method of correlating heat transfer data for surface boiling of liquids[R]. Cambridge, Mass: MIT Division of Industrial Cooporation, 1951.[4]Rohsenow W M, Hartnett J P, Cho Y I. Handbook of Heat Transfer [M]. 3rd ed. New York: McGrawHill, 1998.[5]Jones B J, McHale J P, Garimella S V. The influence of surface roughness on nucleate pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2009 131(12): 121009121014.[6]Li Y Y, Liu Z H, Wang G S. A predictive model of nucleate pool boiling on heated hydrophilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 65: 789797.[7]Benjamin R J, Balakrishnan A R. Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes[J]. International Journal of Heat and Mass Transfer, 1996, 39: 24952504.[8]Phan H T, Caney N, Marty P, et al. Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat and Mass Transfer, 2009, 52(23): 54595471.[9]Gerardi C. Investigation of the pool boiling heat transfer enhancement of nanoengineered fluids by means of highspeed infrared thermography[D]. USA: Massachusetts Institute of Technology, 2009.[10]Rohsenow W M. Boiling[J]. Annual Review of Fluid Mechanics, 1971, 3(1): 211236.[11]Feng B, Weaver K, Peterson G P. Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina[J]. Applied Physics Letters, 2012, 100(5): 05312013.[12]Gaertner R F, Westwater J W. Population of active sites in nucleate boiling heat transfer[J]. Chemical Engineering Progress, 1960, 56(30): 3948.[13]Dhir V K, Liaw S P. Framework for a united model for nucleate and transition pool boiling[J]. ASME Journal of Heat Transfer, 1989, 111(3): 739746.[14]Li C, Wang Z K, Wang P I, et al. Nanostructured copper interface for enhanced boiling[J]. Small, 2008, 4(8): 10841088.[15]Saeidi D, Alemrajabi A A. Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 60: 440449.[16]Hsu C C, Chen P H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings[J]. International Journal of Heat and Mass Transfer, 2012, 55 (13): 37133719.[17]Ahn H S, Kang S H, Kim M H. Visualized effect of alumina nanoparticles surface deposition on water flow boiling heat transfer[J]. Experimental Thermal Fluid Science, 2012, 37: 154163.[18]Kwark S M, Amaya M, Kumar R, et al. Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters[J]. International Journal of Heat and Mass Transfer, 2010, 53 (2324): 51995208.[19]McGillis W R, Carey V P, Fitch J S, et al. Pool boiling enhancement techniques for water at low pressure[C]∥ Proceedings, Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium. New York: IEEE, 1991: 6472. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[7] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[8] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[14] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[15] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||