上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (01): 135-140.
• 能源与动力工程 • 上一篇
陈彦君,李元阳,刘振华
收稿日期:
2014-01-08
基金资助:
国家重点基础研究发展规划(973)项目( 2013CB228303)
CHEN Yanjun,LI Yuanyang,LIU Zhenhua
Received:
2014-01-08
摘要:
摘要: 在考虑固-液接触角影响的半理论沸腾换热模型的基础上,将沸腾换热特性表达为过热度、固-液接触角和物性参数的函数;通过图解法推导出考虑固-液接触角影响的沸腾换热特性的预测关系式;利用无壁面毛细力影响的平坦金属表面或金属表面镀膜加热面在不同饱和压力条件下的饱和水实验数据,获得了适用于不同饱和压力和
中图分类号:
陈彦君,李元阳,刘振华. 固-液接触角对池内核态沸腾换热特性的影响[J]. 上海交通大学学报(自然版), 2015, 49(01): 135-140.
CHEN Yanjun,LI Yuanyang,LIU Zhenhua. Effect of Contact Angle on Nucleate Pool Boiling Heat Transfer[J]. Journal of Shanghai Jiaotong University, 2015, 49(01): 135-140.
[1]Pioro L S, Pioro I L. Industrial twophase thermosyphons: Chapter 2[M]. New York: Begell House, 1997. [2]Kutateladze S S. Heat transfer in condensation and boiling[M]. USA: AEC Rep, 1952. [3]Rohsenow W M. A method of correlating heat transfer data for surface boiling of liquids[R]. Cambridge, Mass: MIT Division of Industrial Cooporation, 1951.[4]Rohsenow W M, Hartnett J P, Cho Y I. Handbook of Heat Transfer [M]. 3rd ed. New York: McGrawHill, 1998.[5]Jones B J, McHale J P, Garimella S V. The influence of surface roughness on nucleate pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2009 131(12): 121009121014.[6]Li Y Y, Liu Z H, Wang G S. A predictive model of nucleate pool boiling on heated hydrophilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 65: 789797.[7]Benjamin R J, Balakrishnan A R. Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes[J]. International Journal of Heat and Mass Transfer, 1996, 39: 24952504.[8]Phan H T, Caney N, Marty P, et al. Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat and Mass Transfer, 2009, 52(23): 54595471.[9]Gerardi C. Investigation of the pool boiling heat transfer enhancement of nanoengineered fluids by means of highspeed infrared thermography[D]. USA: Massachusetts Institute of Technology, 2009.[10]Rohsenow W M. Boiling[J]. Annual Review of Fluid Mechanics, 1971, 3(1): 211236.[11]Feng B, Weaver K, Peterson G P. Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina[J]. Applied Physics Letters, 2012, 100(5): 05312013.[12]Gaertner R F, Westwater J W. Population of active sites in nucleate boiling heat transfer[J]. Chemical Engineering Progress, 1960, 56(30): 3948.[13]Dhir V K, Liaw S P. Framework for a united model for nucleate and transition pool boiling[J]. ASME Journal of Heat Transfer, 1989, 111(3): 739746.[14]Li C, Wang Z K, Wang P I, et al. Nanostructured copper interface for enhanced boiling[J]. Small, 2008, 4(8): 10841088.[15]Saeidi D, Alemrajabi A A. Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 60: 440449.[16]Hsu C C, Chen P H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings[J]. International Journal of Heat and Mass Transfer, 2012, 55 (13): 37133719.[17]Ahn H S, Kang S H, Kim M H. Visualized effect of alumina nanoparticles surface deposition on water flow boiling heat transfer[J]. Experimental Thermal Fluid Science, 2012, 37: 154163.[18]Kwark S M, Amaya M, Kumar R, et al. Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters[J]. International Journal of Heat and Mass Transfer, 2010, 53 (2324): 51995208.[19]McGillis W R, Carey V P, Fitch J S, et al. Pool boiling enhancement techniques for water at low pressure[C]∥ Proceedings, Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium. New York: IEEE, 1991: 6472. |
[1] | 王森,徐宏昌,李雪松,袁志远. 汽油直喷高压喷雾在非闪沸与闪沸条件下的特性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 230-236. |
[2] | 谷波, 杜仲星, 曾炜杰, 田镇, 张智铤. R32管内流动沸腾传热系数关联式和摩擦压降关联式[J]. 上海交通大学学报, 2023, 57(1): 45-54. |
[3] | 顾娟,黄荣宗,刘振宇,吴慧英. 不同热边界条件下微通道内气体的流动与传热特性[J]. 上海交通大学学报(自然版), 2018, 52(9): 1038-1043. |
[4] | 马磊,谷波,田镇,李萍. 基于新流动沸腾传热关联式的微通道平行流蒸发器数值模型[J]. 上海交通大学学报(自然版), 2017, 51(9): 1043-1049. |
[5] | 贾洪伟1,张鹏1,郭涛2,付鑫3,江世臣3. 微通道热沉内液氮的流动沸腾换热实验[J]. 上海交通大学学报(自然版), 2014, 48(09): 1274-1278. |
[6] | 丁国良1, 彭浩2, 胡海涛1, 庄大伟1. 含油纳米制冷剂沸腾中气相与液相之间球形纳米颗粒的迁移特性[J]. 上海交通大学学报(自然版), 2012, 46(05): 671-676. |
[7] | 陈钢, 全晓军, 郑平. 脉冲宽度及质量流量对微尺度流动沸腾的影响[J]. 上海交通大学学报(自然版), 2011, 45(09): 1336-1339. |
[8] | 刘振华, 杨雪飞. 纳米流体在回路型重力热管中的沸腾传热特性[J]. 上海交通大学学报(自然版), 2011, 45(06): 890-894. |
[9] | 庄大伟1, 彭浩2, 胡海涛1, 丁国良1, 朱禹1. 含油金刚石纳米制冷剂的核态池沸腾换热特性[J]. 上海交通大学学报(自然版), 2011, 45(06): 861-865. |
[10] | 陈钢,全晓军,郑平. 脉冲加热下微尺度表面流动沸腾[J]. 上海交通大学学报(自然版), 2010, 44(01): 120-0123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||