上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (03): 357-362.
收稿日期:
2013-03-14
出版日期:
2014-03-28
发布日期:
2014-03-28
基金资助:
国家自然科学基金资助项目(61179018),山东省"泰山学者"建设工程专项经费项目(ts20081130)
Received:
2013-03-14
Online:
2014-03-28
Published:
2014-03-28
摘要:
中图分类号:
康家方a,王红星a,b,刘传辉a,赵志勇a,刘锡国a. 基于IDFT的椭圆球面波函数重构产生方法[J]. 上海交通大学学报(自然版), 2014, 48(03): 357-362.
KANG Jiafanga,WANG Hongxinga,b,LIU Chuanhuia,ZHAO Zhiyonga,LIU Xiguoa. Prolate Spheroidal Wave Functions Generation Method Based on IDFT[J]. Journal of Shanghai Jiaotong University, 2014, 48(03): 357-362.
[1]Moore I C, Cada M. Prolate spheroidal wave functions, an introduction to the Slepian series and its properties[J]. Appl Comput Harmon Anal, 2004, 16: 208230. [2]Slepian D, Pollak H. Prolate spheroidal wave functions, Fourier analysis and uncertainty, I[J]. System Technical Journal,1961,40(1):4364. [3]Usuda K, Zhang H G, Nakagawa M. Mary pulse shape modulation for PSWFbased UWB systems in multipath fading environment[C]∥Global Telecommunications Conference. Dallas, USA:[s.n.],2004:39453504. [4]Sacchi C, Rossi T, Ruggieri M, et al. Efficient waveform design for highbitrate Wband satellite transmissions[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2011, 47(2): 974995. [5]Dullaert W, Rogier H, Boeykens F. Advantages of PSWFbased models for UWB systems[C]∥IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications(APWC). Cape Town, South Africa:[s.n.], 2012. [6]Feng Y, Debes C, Zoubir A. Parametric waveform design using discrete prolate spheroidal sequences for enhanced detection of extended targets[J]. Signal Processing, IEEE Transactions on, 2012, 60(9): 45254536. [7]Wei L Y, Kennedy R, Lamahewa T. An optimal basis of bandlimited functions for signal analysis and design[J]. Signal Processing, IEEE Transactions on, 2010, 58(11): 57445755. [8]Lindquist M, Zhang C H, Glover G, et al. A generalization of the twodimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods[J]. Image Processing, IEEE Transactions on, 2006, 15(9): 27922804. [9]王红星,赵志勇,刘锡国等. 非正弦时域正交调制方法[P]. 中国:ZL 2008 10159238.3, 2011. [10]Walter G, Soleski T. A new friendly method of computing prolate spheroidal wave functions and wavelets[J]. Applied and Computational Harmonic Analysis, 2005, 19(3): 432443. [11]Abderrazek K, Tahar M. New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues[J]. Applied and Computational Harmonic Analysis, 2008,24(3): 269289. [12]Volkmer H. Spheroidal wave functions, in: Handbook of Mathematical Functions[Z]. In: Applied Math Series, Nat Bureau of Standards. London: Combridge University Press, 2004. [13]陆音,朱洪波. 基于近似扁长椭球波函数的超宽带脉冲设计[J]. 通信学报. 2005, 6(10): 6064. LU Yin, ZHU Hongbo. UWB pulse design method based on approximate prolate spheroidal wave functions[J]. Journal on Communications, 2005, 26(10): 6064. [14]Xiao H, Rokhlin V. Highfrequency asymptotic expansions for certain prolate spheroidal wave functions[J]. Journal of Fourier Analysis and Applications, 2003, 9(6): 575. [15]Khare K, George N. Sampling theory approach to prolate spheroidal wavefunctions[J]. Journal of Physics, 2003(36): 10011100021. [16]Kedar K. Bandpass sampling and bandpass analogues of prolate spheroidal functions[J]. Signal Processing, 2006(86): 15501558. [17]王红星,刘锡国,赵志勇,等. 椭圆球面波函数的快速重构算法[J]. 电波科学学报. 2011(4): 765770. WANG Hongxing, LIU Xiguo, ZHAO Zhiyong, et al. Fast method of reconstructing prolate spheroidal wave function[J].Chinese Journal of Radio Science, 2011(4): 765770. [18]Xiao H. Prolate spheroidal wave functions, quadrature, interpolation, and asymptotic formulae[D]. New Haven: Yale University, Department of Computing Science, 2001. |
[1] | 李建军, 朱文峰, 孙海涛, 李元辉, 王顺超. 异质滚合结构固化变形预测及曲面重构预补偿方法[J]. 上海交通大学学报, 2022, 56(7): 965-976. |
[2] | 袁浩波, 董欣欣, 张瑞雪, 鲁榄埔, 陈曦. 源重构近远场变换的探头补偿算法[J]. 上海交通大学学报, 2022, 56(11): 1541-1546. |
[3] | 刘佳鹏, 王江北, 丁烨, 费燕琼. 晶格型模块化软体机器人自重构序列[J]. 上海交通大学学报, 2021, 55(2): 111-116. |
[4] | 王志凯, 陈锦, 姚熊亮, 姜子飞. 基于灰色理论的大型舰船结构重构方法[J]. 上海交通大学学报, 2021, 55(11): 1429-1437. |
[5] | 于特, 王磊. 基于协同控制的自重构平台算法及试验验证[J]. 上海交通大学学报, 2021, 55(11): 1493-1498. |
[6] | 佘文轩, 郭春雨, 周广利, 吴铁成, 徐鹏. 楔形体入水的时间解析-粒子图像测速测试及数值研究[J]. 上海交通大学学报, 2020, 54(8): 839-848. |
[7] | 张思亲, 孔文华, 苏银科. 面向集群仿真应用的拟态重构技术浅析[J]. 空天防御, 2020, 3(4): 52-59. |
[8] | 王嘉宁, 司伟建, 乔玉龙. 基于正交偶极子阵列的混合信号波达方向与极化参数联合估计[J]. 空天防御, 2020, 3(2): 44-51. |
[9] | 张科, 吴亚东. 拓宽大涵道比风扇稳定运行范围的叶片优化设计[J]. 上海交通大学学报, 2020, 54(10): 1024-1034. |
[10] | 付廷强,马太原,王亚飞,殷承良. GPS/INS延时估计与基于残差重构的延时补偿算法[J]. 上海交通大学学报, 2019, 53(10): 1210-1217. |
[11] | 金晶,杨照霖,刘力僮,周健军. 基于CMOS工艺的全集成高线性度可重构全球卫星导航系统射频接收机[J]. 上海交通大学学报(自然版), 2018, 52(10): 1226-1233. |
[12] | 王瑞,刘宾,周天润,杨羽. 基于协同表示的声振传感器网络车辆分类识别[J]. 上海交通大学学报(自然版), 2018, 52(1): 103-110. |
[13] | 吴晨曦,张旻,王可人. 基于连续稀疏重构的宽频段欠定波达方向估计[J]. 上海交通大学学报(自然版), 2017, 51(9): 1131-1137. |
[14] | 李珂,邰能灵,张沈习. 基于改进粒子群算法的配电网综合运行优化[J]. 上海交通大学学报(自然版), 2017, 51(8): 897-902. |
[15] | 李元春1,宋扬2,赵博1,3. 环境约束可重构机械臂模块化力/位置控制[J]. 上海交通大学学报(自然版), 2017, 51(6): 709-714. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||