[1]Canny J. The complexity of robot motion planning [M]. Cambridge: MIT press, 1988.[2]Hauser, K. The minimum constraint removal problem with three robotics applications[C]∥In Proceedings of Workshop on the Algorithmic Foundations of Robotics. New York:IEEE,2012.[3]Hauser K. The minimum constraint removal problem with three robotics applications [J]. The International Journal of Robotics Research, 2014, 33(1): 517.[4]Erickson L H, LaValle S M. A simple, but NPhard, motion planning problem [C]∥In Proceedings of the TwentySeventh AAAI Conference on Artificial Intelligence (AAAI13), Urbana:AAAI,2013: 13881393.[5]McCarthy Z, Bretl T, Hutchinson S. Proving path nonexistence using sampling and alpha shapes[C]∥In Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Saint Paul:IEEE,ICRA, 2012: 25632569.[6]Gbelbecker M, Keller T, Eyerich P, et al. Coming up with good excuses: What to do when no plan can be found[C] ∥In Proceedings of the International Conference on Automated Planning and Scheduling. Toronto:AAAI Press,2010: 8188.[7]Johnson J, Hauser K. Optimal longitudinal control planning with moving obstacles[C]∥In Proceedings of 2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coast, QLD:IEEE,2013: 605611. [8]Hauser K. On responsiveness, safety, and completeness in realtime motion planning [J]. Autonomous Robots, 2012, 32(1): 3548.[9]Hauser K. Minimum constraint displacement motion planning [J]. Robotics: Science and Systems (RSS), 2013,10(2):15.[10]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):5366.[11]Stützle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 358365. |