上海交通大学学报(自然版) ›› 2013, Vol. 47 ›› Issue (12): 1930-1933.

• 自动化技术、计算机技术 • 上一篇    下一篇

基于自适应非局部均值滤波的图像去块算法

刘书,王慈   

  1. (上海交通大学 电子信息与电气工程学院,上海 200240)
     
  • 收稿日期:2012-12-18
  • 基金资助:

    国家自然科学基金资助项目(60902072),教育部博士点新教师基金项目(20090073120030)

Image Deblocking with Adaptive Non-local Means Filter

LIU Shu,WANG Ci
  

  1. (School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2012-12-18

摘要:

针对传输和存储中原始图像被JPEG和MPEG等标准进行压缩而产生的块效应,提出了一种图像去块算法.该算法选取非局部均值滤波作为框架,并通过机器学习来确定和优化参数,使得非局部均值滤波可以做到自适应处理.结果表明,该算法去块效果优于目前最新的形状自适应滤波法和维纳滤波法.
 

 

关键词: 自适应均值滤波, 去块, 机器学习

Abstract:

Common image compression standards such as JPEG and MPEG can lead to blocking artifacts which causes serious image degradation. In this paper, a non-local means filter for deblocking was proposed and its parameters were adaptively optimized by machine learning. The experimental results prove that the proposed algorithm constantly outperforms the peer ones on all kinds of images.
 

Key words: adaptive non-local means filter, deblocking, machine learning

中图分类号: