上海交通大学学报(自然版) ›› 2011, Vol. 45 ›› Issue (08): 1130-1135.
陈硕,于晓升,吴成东,陈东岳
收稿日期:
2011-04-22
出版日期:
2011-08-30
发布日期:
2011-08-30
基金资助:
国家自然科学基金资助项目(60874103),青年科学基金资助项目(61005032),中央高校基本科研业务费专项资助项目(N090404001),辽宁省自然科学基金资助项目(20102062)
CHEN Shuo, YU Xiao-Sheng, WU Cheng-Dong, CHEN Dong-Yue
Received:
2011-04-22
Online:
2011-08-30
Published:
2011-08-30
摘要: 为了实现城市区域内室外场景的快速分类,提出了一种基于视觉注意力选择机制的显著建筑物区域检测方法.该方法首先通过Gabor算子对图像进行滤波,得到水平方向与垂直方向的联合增强图像,然后利用基于相位傅里叶变换(Phase Fourier Transform, PFT)的显著性映射算法提取视野中的显著建筑物候选区域,最后通过方向直方图判别算法去除干扰目标,并采用CV (ChanVese)模型实现显著建筑物区域的分割.该方法在注意力选择机制及建筑物方向特征的基础上,提取具有场景代表性的建筑物区域信息,增强了算法的时效性和场景分析能力,同时实现了区域信息在像素级上的精确检测,并将其应用于美国南加州大学的多类室外场景数据库.实验结果表明,显著建筑物区域检测方法在检测结果、计算速度和鲁棒性等方面均取得了较为满意的效果.
中图分类号:
陈硕, 于晓升, 吴成东, 陈东岳. 用于场景分类的显著建筑物区域检测[J]. 上海交通大学学报(自然版), 2011, 45(08): 1130-1135.
CHEN Shuo, YU Xiao-Sheng, WU Cheng-Dong, CHEN Dong-Yue. Salient Building Region Detection for Scene Classification[J]. Journal of Shanghai Jiaotong University, 2011, 45(08): 1130-1135.
[1]李振华, 敬忠良, 孙韶媛, 等. 基于目标检测的红外和可见光动态图像融合[J]. 上海交通大学学报, 2005, 39(8): 13041307.LI Zhenhua, JING Zhongliang, SUN Shaoyuan, et al. Infrared and visible dynamic image fusion based on moving target detection[J]. Journal of Shanghai Jiaotong University, 2005, 39(8): 13041307.[2]Song Dongjin, Tao Dacheng. Biologically inspired feature manifold for scene classification[J]. IEEE Transactions on Image Processing, 2010, 19(1): 174184.[3]Lowe D G. Distinctive image features from scaleinvariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91110.[4]Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1): 6386.[5]Harris C, Stephens M J. A combined corner and edge detector[C]//Proceedings of the 4th Alvey Vision Conference. Manchester, U K: [s.n.], 1988: 147151.[6]Kumar M P, Koller D. Efficiently selecting regions for scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 32173224.[7]Walther D, Koch C. Modeling attention to salient protoobjects[J]. Neural Networks, 2006, 19(5): 13951407.[8]Itti L, Koch C, Niebur E. A model of saliencybased visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 12541259.[9]Neil D B, John K T. Saliency, attention, and visual search: An information theoretic approach[J]. Journal of Vision, 2009, 9(3): 124.[10]Hou Xiaodi, Zhang Liqing. Saliency detection: A spectral residual approach[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2007: 24382445.[11]Guo Chenlei, Ma Qi, Zhang Liming. Spatiotemporal saliency detection using phase spectrumof quaternion fourier transform[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2008: 18.[12]Chen Dongyue, Han Peng, Wu Chengdong. Frequency spectrum modification: A new model for visual saliency detection[C]//Proceedings of the 7th International Symposium on Neural Networks. Berlin, Germany: Springer Verlag, 2010: 9096.[13]Treisman A M, Gelade G.. A featureintegration theory of attention [J]. Cognitive Psychology, 1980, 12(1): 97136.[14]曲延云, 郑南宁, 李翠华, 等. 基于支持向量机的显著性建筑物检测[J]. 计算机研究与发展, 2007, 44(1): 141147.QU Yanyun, ZHANG Nanning, LI Cuihua, et al. Salient building detection based on SVM[J]. Journal of Computer Research and Development, 2007, 44(1): 141147. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[14] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[15] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||