上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (5): 628-636.doi: 10.16183/j.cnki.jsjtu.2023.405
收稿日期:
2023-08-21
修回日期:
2023-10-03
接受日期:
2023-10-30
出版日期:
2025-05-28
发布日期:
2025-06-05
通讯作者:
杨 光,副教授,博士生导师,电话(Tel.): 021-34206814; E-mail: y_g@sjtu.edu.cn.
作者简介:
林奕霖(1997—),硕士生,从事金属网幕相分离特性研究.
基金资助:
LIN Yilin, WANG Ye, CHEN Chengcheng, CAI Aifeng, YANG Guang(), WU Jingyi
Received:
2023-08-21
Revised:
2023-10-03
Accepted:
2023-10-30
Online:
2025-05-28
Published:
2025-06-05
摘要:
网幕通道式液体获取装置具有稳定、高效等优点,在未来低温推进剂的在轨贮存管理系统中有广阔应用前景.提高网幕的泡破压力以适应低温流体的低表面张力特性是一个重要的研究领域,单层网幕的泡破压力提升受到材料强度、输运效率等限制,目前面临瓶颈.对此,提出通过真空扩散焊接形成多层网幕以提升网幕泡破压力.以双层网幕为例,开展泡破压力测量实验,并与单层网幕进行对比分析.结果表明泡破压力在双层网幕上平均有10%~20%的提升,最大可达25%.该现象是双层网幕特征孔径的减小和Jamin效应两个因素导致的.针对不同双层网幕层间角度与泡破压力的关系展开实验,结果表明层间角度对泡破压力没有明显影响.这将为网幕通道式液体获取装置的设计和改进提供一个新的思路.
中图分类号:
林奕霖, 王晔, 陈成成, 蔡爱峰, 杨光, 吴静怡. 双层金属网幕泡破压力特性的实验研究[J]. 上海交通大学学报, 2025, 59(5): 628-636.
LIN Yilin, WANG Ye, CHEN Chengcheng, CAI Aifeng, YANG Guang, WU Jingyi. Experimental Study on Characteristics of Bubble Point Pressure of Double-Layer Metal Screen[J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 628-636.
表3
本文实验与其他文献中实验结果对比
网幕规格 | 数据来源 | 实验工质 | 泡破压力/Pa | 有效孔径/μm | 与本文误差/% |
---|---|---|---|---|---|
DT40×430 | 本文实验 | HFE7500 | 511.83±22.62 | 120.58±5.20 | — |
文献[ | 乙醇 | — | 107.38 | -10.9 | |
DT80×700 | 本文实验 | HFE7500 | 1 000.60±22.48 | 61.59±1.40 | — |
文献[ | 乙醇 | — | 53.45 | -13.2 | |
文献[ | 丙酮和异丙醇 | — | 58.65 | -4.8 | |
DT203×1 600 | 本文实验 | HFE7500 | 2 680.67±110.53 | 23.02±1.00 | — |
文献[ | 乙醇 | — | 22.79 | -1 |
[1] |
WANG Z, YANG G, WANG Y, et al. A three-dimensional flow model of screen channel liquid acquisition devices for propellant management in microgravity[J]. npj Microgravity, 2022, 8: 28.
doi: 10.1038/s41526-022-00216-5 pmid: 35902585 |
[2] | FESTER A D, VILLARS J A, UNEY E P. Surface tension propellant acquisition system technology for space shuttle reaction control tanks[J]. Journal of Spacecraft and Rockets, 1976, 13(9): 522-527. |
[3] | 王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009. |
WANG Lei, LI Yanzhong, MA Yuan, et al. On-orbitrefilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009. | |
[4] | 马原, 厉彦忠, 王磊, 等. 低温推进剂在轨加注技术与方案研究综述[J]. 宇航学报, 2016, 37(3): 245-252. |
MA Yuan, LI Yanzhong, WANG Lei, et al. Review on on-orbit refueling techniques and schemes of cryogenic propellants[J]. Journal of Astronautics, 2016, 37(3): 245-252. | |
[5] | 王磊, 厉彦忠, 张少华, 等. 低温推进剂空间管理技术研究进展与展望[J]. 宇航学报, 2020, 41(7): 978-988. |
WANG Lei, LI Yanzhong, ZHANG Shaohua, et al. Research progress and outlooks of cryogenic propellant space management technologies[J]. Journal of Astronautics, 2020, 41(7): 978-988. | |
[6] | 马原, 陈虹, 邢科伟, 等. 低温推进剂网幕通道式液体获取装置性能研究进展[J]. 制冷学报, 2019, 40(3): 1-7. |
MA Yuan, CHEN Hong, XING Kewei, et al. Review of screen channel liquid acquisition device for cryogenic propellants[J]. Journal of Refrigeration, 2019, 40(3): 1-7. | |
[7] | HARTWIG J, DARR S. Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems[J]. Applied Thermal Engineering, 2014, 66(1/2): 548-562. |
[8] | SAVAS J A, HARTWIG W J, MODER P J. Thermal analysis of a cryogenic liquid acquisition device under autogenous and non-condensable pressurization schemes[J]. International Journal of Heat and Mass Transfer, 2014, 74(7): 403-413. |
[9] | HARTWIG W J, KAMOTANI Y. The static reseal pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 99: 31-43. |
[10] | HARTWIG J, DARR S, MEYERHOFER P, et al. EDU liquid acquisition device outflow tests in liquid hydrogen: Experiments and analytical modeling[J]. Cryogenics, 2017, 87: 85-95. |
[11] | HARTWIG J, CHATO D, MCQUILLEN J, et al. Screen channel liquid acquisition device outflow tests in liquid hydrogen[J]. Cryogenics, 2014, 64: 295-306. |
[12] | HARTWIG J, MCQUILLEN J. Analysis of screen channel LAD bubble point rests in liquid methane at elevated temperature[C]// 50th Aerospace Sciences Meeting. Reston, USA: American Institute of Aeronautics and Astronautics, 2012: 1-10. |
[13] | HARTWIG J, MCQUILLEN J. Screen channel liquid-acquisition device bubble point tests in liquid methane[J]. Journal of Thermophysics and Heat Transfer, 2014, 29(2): 364-375. |
[14] | HARTWIG J, MCQUILLEN J, JURNS J. Screen channel liquid-acquisition-device bubble point tests in liquid oxygen[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(2): 353-363. |
[15] | HARTWIG J. Screen channel liquid acquisition device bubble point tests in liquid nitrogen[J]. Cryogenics, 2016, 74: 95-105. |
[16] | CAMAROTTI C, DENG O, DARR S, et al. Room temperature bubble point, flow-through screen, and wicking experiments for screen channel liquid acquisition devices[J]. Applied Thermal Engineering, 2019, 149: 1170-1185. |
[17] | CHRISTIAN H, GERSTMANN J. Study on the gas retention capability of metallic screens[C]// 5th European Conference for Aeronautics Sciences. Munich, Germany: DLR, 2013: 1-13. |
[18] | 马原, 孙靖阳, 厉彦忠, 等. 增压速率对多孔金属筛网泡破压力影响的实验研究[J]. 西安交通大学学报, 2021, 55(11): 192-198. |
MA Yuan, SUN Jingyang, LI Yanzhong, et al. Experimental study on the effects of pressurization rate on bubble point pressure of porous metallic screens[J]. Journal of Xi’an Jiaotong University, 2021, 55(11): 192-198. | |
[19] | 周勇瑞, 朱庆春, 耑锐, 等. 通道式液体获取装置筛网低温力学特性研究[J]. 低温与超导, 2021, 49(11): 25-31. |
ZHOU Yongrui, ZHU Qingchun, ZHUAN Rui, et al. Study on cryogenic mechanical properties of screen mesh for channel liquid acquisition device[J]. Cryogenics & Superconductivity, 2021, 49(11): 25-31. | |
[20] |
王晔, 张婉雨, 汪彬, 等. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报, 2022, 73(3): 1102-1110.
doi: 10.11949/0438-1157.20211656 |
WANG Ye, ZHANG Wanyu, WANG Bin, et al. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal, 2022, 73(3): 1102-1110. | |
[21] | PAYNTER H. Acquisition/expulsion system for earth orbital propulsion system, Vol.II[DB/OL]. (1973-10-01) [2023-07-01]. https://ntrs.nasa.gov/citations/19740004413 . |
[22] | CONRATH M, SMIYUKHA Y, FUHRMANN E, et al. Double porous screen element for gas-liquid phase separation[J]. International Journal of Multiphase Flow, 2013, 50(Complete): 1-15. |
[23] | 王晔. 网幕通道式液体获取装置中低温推进剂流动机理及相分离特性研究[D]. 上海: 上海交通大学, 2022. |
WANG Ye. Flow and phase separation of cryogenic propellants in screen channel liquid acquisition devices[D]. Shanghai: Shanghai Jiao Tong University, 2022. | |
[24] | CONRATH M, DREYER M. Gas breakthrough at a porous screen[J]. International Journal of Multiphase Flow, 2012, 42: 29-41. |
[25] | HARTWIG W J, KAMOTANI Y. The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 101: 502-516. |
[26] | HARTWIG W J, MANN JR J A. A predictive bubble point pressure model for porous liquid acquisition device screens[J]. Journal of Porous Media, 2014, 17(7): 587-600. |
[27] | 邱惠中. 扩散焊接及其在航空航天领域的应用[J]. 宇航材料工艺, 1997(4): 27-32. |
QIU Huizhong. Diffusion welding and its application in aerospace[J]. Aerospace Materials and Technology, 1997(4): 27-32. | |
[28] | 高强, 郭建亭, 刘午, 等. TiAl合金与42CrMo扩散钎焊的界面组织及形成机理[J]. 航空材料学报, 2003(Sup.1): 51-54. |
GAO Qiang, GUO Jianting, LIU Wu, et al. The microstructure and forming mechanism of diffusion brazing interface of TiAl alloy and 42CrMo[J]. Journal of Aeronautical Meterials, 2003(Sup.1): 51-54. | |
[29] | 刘赛. 毛细上升与贾敏效应的理论与实验研究[D]. 山东: 中国石油大学, 2020. |
LIU Sai. Theoretical and experimental studies of capillary rise and Jamin effect[D]. Shandong: China University of Petroleum, 2020. |
[1] | 刘宏升, 梁晓艳, 徐奕辰, 解茂昭. 空气雾化柴油在多孔介质内稳定燃烧的实验研究[J]. 上海交通大学学报, 2025, 59(5): 637-647. |
[2] | 纪冕, 林艳萍, 王冬梅, 陈立, 马昕. 足部特征点准确定位及形态参数自动测量方法[J]. 上海交通大学学报, 2025, 59(5): 703-710. |
[3] | . 基于涡流栅差动结构的新式编码器[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 337-351. |
[4] | 樊朋飞, 李庆波, 李臻, 陈成林. 基于雷达相对测量的制导信息提取算法研究[J]. 空天防御, 2025, 8(2): 50-57. |
[5] | 李易, 欧树彦, 梁伟栋, 董佳宝, 庄至栋. 飞行器低空大动压整流罩旋抛分离数值模拟[J]. 空天防御, 2025, 8(1): 102-108. |
[6] | 王爽1, 王登峰2, 宁占金1, 胡中建1. 基于改进的灰色关联分析的车架优化设计[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1071-1080. |
[7] | 邢宏文, 刘思仁, 管啸. 多场融合测量驱动的飞机大部件对接质量控制[J]. 空天防御, 2024, 7(5): 97-102. |
[8] | 李吉昊1, 林冠英2, 王暖升3, 李 洋3, 李俊漾1. 柔性海洋CTD传感器发展概述[J]. 海洋工程装备与技术, 2024, 11(3): 69-77. |
[9] | 郭同彪, 张吉, 李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究[J]. 空天防御, 2024, 7(2): 29-35. |
[10] | 于淼, 胡敬轩, 张寿志, 魏静静, 孙建群, 吴屹潇. 基于PMU梯度动态偏差的新型电力系统快速稳定性[J]. 上海交通大学学报, 2024, 58(1): 40-49. |
[11] | 杨丹,余海东,林张鹏. 基于绝对节点坐标法的柔性复合结构动力学分析与最优参数设计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 621-629. |
[12] | 杜立彬, 崔永超, 刘 杰, 张晓波. 投弃式温盐深测量仪发展概述[J]. 海洋工程装备与技术, 2023, 10(3): 33-40. |
[13] | 李微微, 付丽强, 龚钰哲, 许斌, 丁星. 分离螺栓解锁冲击下薄壁圆筒缓冲性能研究[J]. 空天防御, 2023, 6(2): 43-46. |
[14] | 张嶔, 王鑫宇, 王智程, 王天源. 大角度斜流下螺旋桨与导管桨尾流场特性[J]. 上海交通大学学报, 2023, 57(11): 1432-1441. |
[15] | 沈逸, 曹家兴, 黄永华. 采用叠片法的黄铜低温接触热阻测量[J]. 上海交通大学学报, 2023, 57(1): 76-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||