上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (8): 1271-1281.doi: 10.16183/j.cnki.jsjtu.2023.070
收稿日期:
2023-03-02
修回日期:
2023-04-21
接受日期:
2023-05-12
出版日期:
2024-08-28
发布日期:
2024-08-27
通讯作者:
刘 冉,副教授,博士生导师;E-mail: 作者简介:
石亚东(1999-),硕士生,主要研究方向为运筹优化算法设计.
基金资助:
SHI Yadong, LIU Ran(), WANG Chengkai, WU Zerui
Received:
2023-03-02
Revised:
2023-04-21
Accepted:
2023-05-12
Online:
2024-08-28
Published:
2024-08-27
摘要:
针对交期随机的批量流车间调度问题,以最小化工件延期期望之和为目标,推导出工件交期符合3类经典随机分布条件下问题目标的闭式计算表达式.建立考虑换模时间与随机交期的问题数学模型,针对模型高度非线性特征对其线性化.设计一种基于逻辑的Benders分解(LBBD)与分枝定界相结合的优化算法,提出两种有效加速策略提升算法求解效率.数值实验结果验证了算法的有效性,通过随机交期与确定交期结果的比较,验证了考虑随机的必要性.
中图分类号:
石亚东, 刘冉, 王铖恺, 吴泽锐. 基于Benders分解和分枝定界的随机交期批量流流水车间调度[J]. 上海交通大学学报, 2024, 58(8): 1271-1281.
SHI Yadong, LIU Ran, WANG Chengkai, WU Zerui. Stochastic Due-Date Lot-Streaming Flowshop Scheduling with Benders Decomposition and Branch-and-Bound[J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1271-1281.
表2
决策变量及含义
决策变量 | 含义 |
---|---|
aij | 辅助变量,用于顺序记录 |
rij | 整数变量,工件i的第j个子批的最小批量个数,可以为0,0≤i≤N, 1≤j≤ui |
tijk | 连续变量,工件i的第j个子批在机器k上的完工时间, 0≤i≤N, 1≤j≤ui, 1≤k≤K |
yij | 0-1变量,rij>0时,yij=1,rij=0时,yij=0. 0≤i≤N, 1≤j≤ui |
zijgh | 0-1变量,当工件i的第j个子批和工件g的第h个子批均不为0,且工件i的第j个子批为工件g的第h个子批的紧前子批时,zijgh=1;否则,zijgh=0. 0≤i≤N, 1≤j≤ui, 0≤g≤N, 1≤h≤ug |
Sij | 整数变量,工件i的第j个子批的工件数量,0≤i≤N, 1≤j≤ui |
表4
精确求解数值实验结果
算例 | 分布 类型 | LBBD结合分枝定界 | LBBD结合Gurobi | 上界 Gap/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
上界, | 下界, | Gapb/% | 时间/s | 上界, | 下界, | Gapb/% | 时间/s | ||||
9 | N | 73.9 | 73.9 | 0 | 1 575 | 89.9 | 43.40 | 51.60 | 3600 | 17.73 | |
10 | N | 282.5 | 282.5 | 0 | 963 | 306.3 | 38.50 | 87.40 | 3600 | 7.77 | |
11 | N | 397.8 | 397.8 | 0 | 1 378 | 397.9 | 67.10 | 83.10 | 3600 | 0.03 | |
12 | N | 338.7 | 338.7 | 0 | 1 621 | 380.2 | 64.00 | 83.20 | 3600 | 10.92 | |
13 | N | 524.0 | 524.0 | 0 | 1 940 | 639.1 | 44.70 | 93.00 | 3600 | 18.01 | |
14 | E | 400.3 | 379.2 | 5.20 | 3 600 | 416.5 | 113.30 | 72.80 | 3600 | 3.90 | |
15 | E | 471.8 | 471.8 | 0 | 163 | 478.2 | 195.80 | 59.10 | 3600 | 1.34 | |
16 | E | 424.4 | 420.3 | 1.00 | 1 280 | 434.3 | 150.70 | 65.30 | 3600 | 2.28 | |
17 | E | 163.1 | 161.9 | 0.70 | 1 228 | 181.0 | 52.30 | 71.10 | 3600 | 9.87 | |
18 | E | 582.5 | 578.5 | 0.70 | 2 847 | 674.6 | 175.40 | 74.00 | 3600 | 13.65 | |
19 | U | 77.4 | 77.4 | 0 | 2 880 | 126.7 | 14.10 | 88.90 | 3600 | 38.91 | |
20 | U | 96.2 | 96.2 | 0 | 422 | 110.5 | 25.70 | 76.70 | 3600 | 12.94 | |
21 | U | 464.1 | 464.1 | 0 | 2 078 | 541.3 | 93.00 | 82.80 | 3600 | 14.26 | |
22 | U | 47.4 | 47.4 | 0 | 152 | 47.8 | 0.06 | 99.90 | 3600 | 0.84 | |
23 | U | 205.9 | 205.9 | 0 | 948 | 236.7 | 12.55 | 94.70 | 3600 | 13.01 |
表5
启发式算法数值实验结果
算例 | 分布 | LBBD | 企业实际方案 | Gapmin/ % | Gurobi | 遗传算法 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
求解 结果 | 时间/s | 策略1 | 策略2 | 策略3 | 策略4 | 时间/s | 求解 结果 | Gapg/ % | 时间/s | 求解 结果 | Gapc/ % | 时间/s | ||||||
24 | N | 1 700 | 3 600 | 3 450 | 3 638 | 5 188 | 4 986 | <5 | 50.72 | 2 066 | 21.55 | 3 600 | 2 905 | 41.48 | 3 600 | |||
25 | N | 1 022 | 3 600 | 3 981 | 4 283 | 5 850 | 3 525 | <5 | 71.01 | 1 109 | 8.51 | 3 600 | 2 484 | 58.86 | 3 600 | |||
26 | N | 1 608 | 3 600 | 4 256 | 4 390 | 7 181 | 5 437 | <5 | 62.22 | 2 063 | 28.30 | 3 600 | 2 843 | 43.44 | 3 600 | |||
27 | N | 502 | 3 600 | 2 771 | 2 639 | 2 354 | 2 986 | <5 | 78.68 | 588 | 17.19 | 3 600 | 2 211 | 77.31 | 3 600 | |||
28 | N | 2 039 | 3 600 | 5 751 | 5 545 | 7 041 | 7 408 | <5 | 63.23 | 2 308 | 13.19 | 3 600 | 2 526 | 19.28 | 3 600 | |||
29 | N | 2 804 | 3 600 | 5 532 | 5 447 | 5 111 | 6 162 | <5 | 45.14 | 3 045 | 8.59 | 3 600 | 4 412 | 36.45 | 3 600 | |||
30 | E | 2 019 | 3 600 | 2 752 | 2 884 | 4 027 | 4 813 | <5 | 26.64 | 2 206 | 9.26 | 3 600 | 2 981 | 32.27 | 3 600 | |||
31 | E | 999 | 3 600 | 1 873 | 2 000 | 2 269 | 2 876 | <5 | 46.66 | 1 259 | 26.03 | 3 600 | 1 617 | 38.22 | 3 600 | |||
32 | E | 807 | 3 600 | 1 023 | 1 051 | 1 348 | 2 348 | <5 | 21.11 | 1 016 | 25.90 | 3 600 | 1 498 | 46.13 | 3 600 | |||
33 | U | 1 301 | 3 600 | 2 756 | 2 756 | 4 066 | 5 757 | <5 | 52.79 | 1 865 | 43.35 | 3 600 | 2 686 | 51.56 | 3 600 | |||
34 | U | 2 148 | 3 600 | 3 825 | 3 943 | 5 119 | 7 178 | <5 | 43.84 | 2 486 | 15.74 | 3 600 | 3 645 | 41.07 | 3 600 | |||
35 | U | 1 002 | 3 600 | 1 881 | 1 962 | 2 138 | 4 807 | <5 | 46.73 | 1 082 | 7.98 | 3 600 | 2 738 | 63.40 | 3 600 |
[1] | GAREY M R, JOHNSON D S, SETHI R. The complexity of flowshop and jobshop scheduling[J]. Mathematics of Operations Research, 1976, 1(2): 117-129. |
[2] | CHUNG C S, FLYNN J, KIRCA Ö. A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problems[J]. European Journal of Operational Research, 2006, 174(1): 1-10. |
[3] | GMYS J, MEZMAZ M, MELAB N, et al. A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[J]. European Journal of Operational Research, 2020, 284(3): 814-833. |
[4] | RAD S F. A new ant algorithmic approach for solving PFSP[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46(1): 181-188. |
[5] | 黎阳, 李新宇, 牟健慧. 基于改进模拟退火算法的大规模置换流水车间调度[J]. 计算机集成制造系统, 2020, 26(2): 366-375. |
LI Yang, LI Xinyu, MOU Jianhui. Large-scale permutation flowshop scheduling method based on improved simulated annealing algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(2): 366-375. | |
[6] |
赵芮, 顾幸生. 求解零空闲流水车间调度问题的离散正弦优化算法[J]. 上海交通大学学报, 2020, 54(12): 1291-1299.
doi: 10.16183/j.cnki.jsjtu.2019.321 |
ZHAO Rui, GU Xingsheng. A discrete sine optimization algorithm for No-idle flow-shop scheduling problem[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1291-1299. | |
[7] | 高丽, 周炳海, 杨学良, 等. 基于多规则资源分配的柔性作业车间调度问题多目标集成优化方法[J]. 上海交通大学学报, 2015, 49(8): 1191-1198. |
GAO Li, ZHOU Binghai, YANG Xueliang, et al. A multi-objective integrated optimization method for FJSP based on multi-rule resource allocation[J]. Journal of Shanghai Jiao Tong University, 2015, 49(8): 1191-1198. | |
[8] |
汤洪涛, 王丹南, 邵益平, 等. 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56(2): 201-213.
doi: 10.16183/j.cnki.jsjtu.2020.435 |
TANG Hongtao, WANG Dannan, SHAO Yiping, et al. A modified migrating birds optimization for multi-objective lot streaming hybrid flowshop scheduling[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 201-213. | |
[9] | CHEN T L, CHENG C Y, CHOU Y H. Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming[J]. Annals of Operations Research, 2020, 290(1): 813-836. |
[10] | PAN Y X, GAO K Z, LI Z W, et al. Improved meta-heuristics for solving distributed lot-streaming permutation flow shop scheduling problems[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(1): 361-371. |
[11] | SANG H Y, PAN Q K, DUAN P Y, et al. An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems[J]. Journal of Intelligent Manufacturing, 2018, 29(6): 1337-1349. |
[12] | TSENG C T, LIAO C J. A discrete particle swarm optimization for lot-streaming flowshop scheduling problem[J]. European Journal of Operational Research, 2008, 191(2): 360-373. |
[13] | ALFIERI A, GLASS C, VAN DE VELDE S. Two-machine lot streaming with attached setup times[J]. IIE Transactions, 2012, 44(8): 695-710. |
[14] | VILLARINHO P A, PANADERO J, PESSOA L S, et al. A simheuristic algorithm for the stochastic permutation flowshop problem with delivery dates and cumulative payoffs[J]. International Transactions in Operational Research, 2021, 28(2): 716-737. |
[15] | LIU R, FAN X Y, WU Z R, et al. The physician scheduling of fever clinic in the COVID-19 pandemic[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(2): 709-723. |
[16] | BELZUNCE F, MARTÍNEZ-RIQUELME C, MULERO J. An introduction to stochastic orders[M]. New York, American: Academic Press, 2015. |
[17] | NAWAZ M, ENSCORE E E, HAM I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11(1): 91-95. |
[18] | RUIZ R, STÜTZLE T. An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives[J]. European Journal of Operational Research, 2008, 187(3): 1143-1159. |
[1] | 汤洪涛, 王丹南, 邵益平, 赵文彬, 江伟光, 陈青丰. 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56(2): 201-213. |
[2] | 朱奕,杨根科,潘常春. 基于阈值深度优先策略求解非对称旅行商问题的混合分枝定界算法[J]. 上海交通大学学报(自然版), 2008, 42(10): 1665-1668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||