上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (8): 1167-1178.doi: 10.16183/j.cnki.jsjtu.2022.464
收稿日期:
2022-11-18
修回日期:
2023-01-18
接受日期:
2023-01-19
出版日期:
2024-08-28
发布日期:
2024-08-27
通讯作者:
程 勇,教授,博士生导师;E-mail:作者简介:
熊 勇(1992-),博士生,从事等离子体辅助燃烧方向研究.
基金资助:
XIONG Yong, ZHAO Qingwu, LIU Peng, LIU Jingyuan, CHENG Yong()
Received:
2022-11-18
Revised:
2023-01-18
Accepted:
2023-01-19
Online:
2024-08-28
Published:
2024-08-27
摘要:
探索在内燃机缸内压力较低时利用非平衡等离子体对缸内工质进行预处理,改善燃烧过程的可行性.在初始压力为0.1 MPa,初始温度为303 K,当量比为1的丙烷/空气混合气中,基于高频纳秒脉冲驱动沿面介质阻挡放电等离子体发生系统,在定容燃烧弹中研究不同点火间隔和放电脉冲数下非平衡等离子体预处理混合气的放电形态与能量特性及其对燃烧的影响.放电试验表明:单脉冲能量约为5.2 mJ,平均功率为30 kW;脉冲间隔80 μs的80个脉冲能产生约40个放电通道.预处理混合气试验表明:混合气经过脉冲间隔80 μs的80个脉冲处理后,燃烧持续期缩短1.33 ms,缩短了16%;随着放电脉冲数的增加,燃烧持续期先线性降低,然后趋于稳定;随着点火间隔的增大,燃烧持续期延长.
中图分类号:
熊勇, 赵庆武, 刘澎, 刘静远, 程勇. 非平衡等离子体预处理对丙烷/空气混合气燃烧特性的影响[J]. 上海交通大学学报, 2024, 58(8): 1167-1178.
XIONG Yong, ZHAO Qingwu, LIU Peng, LIU Jingyuan, CHENG Yong. Effect of Non-Equilibrium Plasma Pretreatment on Combustion Characteristics of Propane/Air Mixtures[J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1167-1178.
[1] | SUN W T, UDDI M, WON S H, et al. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits[J]. Combustion & Flame, 2012, 159(1): 221-229. |
[2] | STARIKOVSKIY A, ALEKSANDROV N, RAKITIN A. Plasma-assisted ignition and deflagration-to-detonation transition[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2012, 370(1960): 740-773. |
[3] | JU Y G, SUN W T. Plasma assisted combustion: Dynamics and chemistry[J]. Progress in Energy & Combustion Science, 2015, 48: 21-83. |
[4] | JI S B, LI Y, TIAN G H, et al. Investigation of laminar combustion characteristics of ozonized methane-air mixture in a constant volume combustion bomb[J]. Energy, 2021, 226: 120349. |
[5] | SCHMITT M, BOULOUCHOS K. Role of the intake generated thermal stratification on the temperature distribution at top dead center of the compression stroke[J]. International Journal of Engine Research, 2016, 17(8): 836-845. |
[6] | RAMADHAS A S, XU H M. Intake air heating strategy to reduce cold-start emissions from diesel engines[J]. Biofuels, 2018, 9(3): 405-414. |
[7] | PASTOR J V, GARCíA-OLIVER J M, PASTOR J M, et al. Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions[J]. Fuel, 2011, 90(4): 1556-1566. |
[8] | CATHEY C D, TANG T, SHIRAISHI T, et al. Nanosecond plasma ignition for improved performance of an internal combustion engine[J]. IEEE Transactions on Plasma Science, 2007, 35(6): 1664-1668. |
[9] | SHIRAISHI T, URUSHIHARA T, GUNDERSEN M. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition[J]. Journal of Physics D: Applied Physics, 2009, 42(13): 135208. |
[10] | SHIRAISHI T, URUSHIHARA T. Fundamental analysis of combustion initiation characteristics of low temperature plasma ignition for internal combustion gasoline engine[C]// SAE Technical Paper Series. Warrendale, USA: SAE International, 2011. |
[11] | TANG X M, JIANG T H, FANG W R. A unipolar compact nanosecond pulsed power supply with high power factor for dielectric barrier discharge applications[J]. Review of Scientific Instruments, 2022, 93(8): 084707. |
[12] | 赵庆武, 程勇, 杨雪, 等. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421. |
ZHAO Qingwu, CHENG Yong, YANG Xue, et al. A high-frequency nanosecond-pulsed ignition system for plasma assisted ignition and combustion[J]. Journal of Jilin University (Engineering & Technology Edition), 2021, 51(2): 414-421. | |
[13] | YAN J Q, SHEN S K, DING W D. High-power nanosecond pulse generators with improved reliability by adopting auxiliary triggering topology[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1353-1364. |
[14] | STEPANYAN S A, YU STARIKOVSKIY A, POPOV N A, et al. A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: Transition to filamentary mode[J]. Plasma Sources Science & Technology, 2014, 23(4): 045003. |
[15] | CHEN T Y, TANEJA T S, ROUSSO A C, et al. Time-resolved in situ measurements and predictions of plasma-assisted methane reforming in a nanosecond-pulsed discharge[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6533-6540. |
[16] | LI J Q, XU B, WANG W B, et al. Experimental study on dry reforming of methane by a plasma catalytic hybrid system[J]. Journal of Fuel Chemistry & Technology, 2021, 49(8): 1161-1172. |
[17] | MAO X Q, CHEN Q, GUO C H. Methane pyrolysis with N2/Ar/He diluents in a repetitively-pulsed nanosecond discharge: Kinetics development for plasma assisted combustion and fuel reforming[J]. Energy Conversion & Management, 2019, 200: 112018. |
[18] | LIN B X, WU Y, ZHANG Z B, et al. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures[J]. Combustion & Flame, 2017, 182: 102-113. |
[19] | HWANG J, BAE C, PARK J, et al. Microwave-assisted plasma ignition in a constant volume combustion chamber[J]. Combustion & Flame, 2016, 167: 86-96. |
[20] | STARIKOVSKIY A. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons[C]// Proceedings of the 55th AIAA Aerospace Sciences Meeting. Grapevine, USA: AIAA, 2017: AIAA 2017-1977. |
[21] | WANG X L, GAO Y, ZHANG S, et al. Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters[J]. Applied Energy, 2019, 243: 132-144. |
[22] | ZHAO Q W, XIONG Y, YANG X, et al. Experimental study on multi-channel ignition of propane-air by transient repetitive nanosecond surface dielectric barrier discharge[J]. Fuel, 2022, 324: 124723. |
[23] | LI Y, VAN VELDHUIZEN E M, ZHANG G J, et al. Positive double-pulse streamers: How pulse-to-pulse delay influences initiation and propagation of subsequent discharges[J]. Plasma Sources Science & Technology, 2018, 27(12): 125003. |
[24] | BENARD N, ZOUZOU N, CLAVERIE A, et al. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications[J]. Journal of Applied Physics, 2012, 111(3): 03303. |
[25] | PANG L, HE K, DI D X, et al. Capacitances and energy deposition curve of nanosecond pulse surface dielectric barrier discharge plasma actuator[J]. Review of Scientific Instruments, 2014, 85(5): 053501. |
[26] | UKAI T, RUSSELL A, ZARE-BEHTASH H, et al. Temporal variation of the spatial density distribution above a nanosecond pulsed dielectric barrier discharge plasma actuator in quiescent air[J]. Physics of Fluids, 2018, 30(11): 116106. |
[27] | ZHANG C, HUANG B D, LUO Z B, et al. Atmospheric-pressure pulsed plasma actuators for flow control: Shock wave and vortex characteristics[J]. Plasma Sources Science & Technology, 2019, 28(6): 064001. |
[28] | SOLOVIEV V R, KRIVTSOV V M. Numerical modelling of nanosecond surface dielectric barrier discharge evolution in atmospheric air[J]. Plasma Sources Science & Technology, 2018, 27(11): 114001. |
[29] | STEPANYAN S A, SOLOVIEV V R, STARIKOVSKAIA S M. An electric field in nanosecond surface dielectric barrier discharge at different polarities of the high voltage pulse: Spectroscopy measurements and numerical modeling[J]. Journal of Physics D: Applied Physics, 2014, 47(48): 485201. |
[30] | TONG X, WANG Z R, CHENG Z, et al. A modeling method for predicting the concentration of indoor carbon dioxide leakage and dispersion based on similarity theory[J]. Energy & Buildings, 2017, 151: 585-591. |
[31] | TSOLAS N, LEE J G, YETTER R A. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2015, 373(2048): 20140344. |
[32] | ECKERT Z, TSOLAS N, TOGAI K, et al. Kinetics of plasma-assisted oxidation of highly diluted hydrocarbon mixtures excited by a repetitive nanosecond pulse discharge[J]. Journal of Physics D: Applied Physics, 2018, 51(37): 374002. |
[33] | TSOLAS N, YETTER R A. Kinetics of plasma assisted pyrolysis and oxidation of ethylene. Part 1: Plasma flow reactor experiments[J]. Combustion & Flame, 2017, 176: 534-546. |
[34] | POPOV N A. Kinetics of plasma-assisted combustion: Effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures[J]. Plasma Sources Science & Technology, 2016, 25(4): 043002. |
[35] | KIM Y, FERRERI V W, ROSOCHA L A, et al. Effect of plasma chemistry on activated propane/air flames[J]. IEEE Transactions on Plasma Science, 2006, 34(6): 2532-2536. |
[1] | 刘静远, 王宁, 赵庆武, 熊勇, 程勇. 纳秒脉冲放电参数对点火性能的影响[J]. 上海交通大学学报, 2022, 56(1): 28-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||