上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (7): 1036-1046.doi: 10.16183/j.cnki.jsjtu.2023.023
收稿日期:
2023-01-19
修回日期:
2023-03-22
接受日期:
2023-04-06
出版日期:
2024-07-28
发布日期:
2024-07-26
通讯作者:
赵国成,助理研究员,电话(Tel.): 021-34207184;E-mail: guocheng.zhao@sjtu.edu.cn.
作者简介:
李雨瑶(2002-),本科生,从事深海水力集矿研究.
基金资助:
LI Yuyao1,2, ZHAO Guocheng1,2(), XIAO Longfei1,2
Received:
2023-01-19
Revised:
2023-03-22
Accepted:
2023-04-06
Online:
2024-07-28
Published:
2024-07-26
摘要:
实现高效、低扰动海底集矿是深海多金属结核矿产资源开发面临的关键技术挑战.海底矿粒采集过程的力学行为十分复杂,是一个涉及三维紊动流动、离散粗颗粒运动与细颗粒土体破坏的流固土多物理场耦合过程.针对吸扬式、附壁射流式、射流冲采式3种主流的深海水力集矿方法,基于K-Epsilon两层模型和离散元模型分别模拟集矿液相湍流和固相矿粒,进行矿粒采集性能和环境扰动的数值模拟研究,分析集矿流量qm和集矿头拖曳速度v对矿粒采集率η、集矿流场湍动能k和海水-沉积物混合物体积分数φ的影响,探究集矿流场中流速、压力和矿粒的分布特征.结果表明:在相同qm和v下,射流冲采式模型获得的η最大,吸扬式模型获得的η最小;射流冲采式模型对近底流场扰动程度最大,深海沉积物扩散现象也最为明显,而吸扬式和附壁射流式模型造成的环境扰动程度较小,更有利于环保要求;附壁射流式模型的η对qm和v最不敏感,且该集矿模型可以较好地兼顾高效矿粒采集和低环境扰动.研究结果可为揭示集矿机理和设计研发高效低扰动集矿装置提供科学依据.
中图分类号:
李雨瑶, 赵国成, 肖龙飞. 不同水力集矿模型的矿粒采集及环境扰动特性数值研究[J]. 上海交通大学学报, 2024, 58(7): 1036-1046.
LI Yuyao, ZHAO Guocheng, XIAO Longfei. Numerical Study on Collection and Environmental Disturbance Characteristics of Different Nodule Collecting Models[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1036-1046.
表2
3种模型的网格和时间步长收敛性分析
集矿模型 | 分析参数 | 网格数 | 时间 步长/s | qmn/ (kg·s-1) |
---|---|---|---|---|
吸扬式 | 网格收敛性分析 | 1 216 892 | 0.05 | 0.171 008 |
1 375 034 | 0.05 | 0.174 044 | ||
1 561 169 | 0.05 | 0.177 083 | ||
2 082 416 | 0.05 | 0.180 143 | ||
2 837 573 | 0.05 | 0.181 357 | ||
时间步长收敛性分析 | 2 082 416 | 0.06 | 0.177 987 | |
2 082 416 | 0.05 | 0.180 143 | ||
2 082 416 | 0.04 | 0.181 370 | ||
2 082 416 | 0.03 | 0.181 452 | ||
2 082 416 | 0.02 | 0.181 604 | ||
附壁射流式 | 网格收敛性分析 | 1 582 651 | 0.05 | 0.176 716 |
1 906 052 | 0.05 | 0.179 113 | ||
2 238 371 | 0.05 | 0.180 306 | ||
2 376 212 | 0.05 | 0.180 706 | ||
2 526 408 | 0.05 | 0.181 037 | ||
2 777 746 | 0.05 | 0.181 384 | ||
时间步长收敛性分析 | 2 238 371 | 0.06 | 0.178 097 | |
2 238 371 | 0.05 | 0.180 306 | ||
2 238 371 | 0.04 | 0.181 666 | ||
2 238 371 | 0.03 | 0.182 000 | ||
2 238 371 | 0.02 | 0.182 149 | ||
射流冲采式 | 网格收敛性分析 | 253 143 | 0.05 | 0.166 392 |
582 205 | 0.05 | 0.177 978 | ||
1 114 108 | 0.05 | 0.183 515 | ||
1 847 882 | 0.05 | 0.184 726 | ||
时间步长收敛性分析 | 1 847 882 | 0.06 | 0.183 722 | |
1 847 882 | 0.05 | 0.184 263 | ||
1 847 882 | 0.04 | 0.184 726 | ||
1 847 882 | 0.03 | 0.184 982 |
[1] | ALVARENGA R A F, PRÉAT N, DUHAYON C, et al. Prospective life cycle assessment of metal commodities obtained from deep-sea polymetallic nodules[J]. Journal of Cleaner Production, 2022, 330: 1-10. |
[2] | 邱显焱. 深海采矿系统扬矿子系统纵向振动被动减振研究[D]. 长沙: 中南大学, 2014. |
QIU Xianyan. Research for passive control for longitudinal vibration of lifting pipe in deep sea mining system[D]. Changsha: Central South University, 2014. | |
[3] | ELERIAN M, VAN R C, HELMONS R. Experimental and numerical modelling of deep-sea-mining-generated turbidity currents[J]. Minerals, 2022, 12(5): 1-23. |
[4] | 夏建新, 吴优, 邹燚, 等. 基于PIV技术粗颗粒在管流断面浓度分布试验研究[J]. 应用基础与工程科学学报, 2017, 25(6): 1086-1093. |
XIA Jianxin, WU You, ZOU Yi, et al. Experimental study on the concentration distribution in pipe flow based on PIV technology[J]. Journal of Basic Science and Engineering, 2017, 25(6): 1086-1093. | |
[5] | 赵国成, 肖龙飞, 杨建民, 等. 深海水力集矿球形颗粒受力特性试验研究[J]. 上海交通大学学报, 2019, 53(8): 907-912. |
ZHAO Guocheng, XIAO Longfei, YANG Jianmin, et al. Experimental research on force characteristics of a spherical particle in deep sea hydraulic collecting[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8): 907-912. | |
[6] | XIONG H, CHEN Y, YANG N, et al. Numerical study on settling and floating movements of a sphere particle flowing in a vertical pipe[C]//The 28th International Ocean and Polar Engineering Conference. Sapporo, Japan:The 28th International Ocean and Polar Engineering Conference, 2018: 176-182. |
[7] | LIM S J, KIM J W, JUNG S T, et al. Deep-seawater flow characteristics around the manganese nodule collecting device[J]. Procedia Engineering, 2015, 116: 544-551. |
[8] | CHO S, PARK S, OH J, et al. Design optimization of deep-seabed pilot miner system with coupled relations between constraints[J]. Journal of Terramechanics, 2019, 83: 25-34. |
[9] | YANG N, TANG H. Several considerations of the design of the hydraulic pick-up device[J]. Environmental Health Perspectives, 2003, 32(11): 267-271. |
[10] | HONG S, CHOI J S, KIM J H, et al. A note on design and operation of waterjet nodule lifter of manganese nodule collector[J]. International Journal of Offshore and Polar Engineering, 2001, 11(3): 237-239. |
[11] |
黎蔚杰, 张琪, 廖晨聪, 等. 孤立波和海流作用下单桩基础局部冲刷及保护的数值分析[J]. 上海交通大学学报, 2021, 55(6): 631-637.
doi: 10.16183/j.cnki.jsjtu.2020.108 |
LI Weijie, ZHANG Qi, LIAO Chencong, et al. Numerical analysis of local scour and protection of a single pile around a seabed under solitary wave and current[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 631-637. | |
[12] | CHEN X, LIU X, LI H, et al. Effects of seabed geotechnical properties on scour mechanism at the pile in non-cohesive soils: Experimental study[J]. Ocean Engineering, 2022, 254: 1-15. |
[13] | DURDEN J M, MURPHY K, JAECKEL A, et al. A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model[J]. Marine Policy, 2017, 84: 193-201. |
[14] | SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238. |
[15] | 徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展[J]. 力学进展, 2003, 33(2): 251-260. |
XU Yong, SUN Qichen, ZHANG Ling, et al. Advances in discrete element methods for particulate materials[J]. Advances in Mechanics, 2003, 33(2): 251-260. | |
[16] | KAUFMAN R, LATIMER J P, TOLEFSON D C. The design and operation of a pacific ocean deep-ocean mining test ship: R/V Deepsea Minner II[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 1985: 33-43. |
[17] | HONG S, CHOI J S, KIM J H, et al. Experimental study on hydraulic performance of hybrid pick-up device of manganese nodule collector[C]//The 3rd ISOPE Ocean Mining Symposium. Goa, India: The Third ISOPE Ocean Mining Symposium, 1999: 69-77. |
[18] | HU J, ZHAO G, XIAO L, et al. Experimental investigation on characteristics of flow field in ‘Suck-up-based’ and ‘Coandă-Effect-based’ nodule pick-up devices[C]//The 30th International Ocean and Polar Engineering Conference. Virtual:The 30th International Ocean and Polar Engineering Conference, 2020: 34-44. |
[1] | 赵国成,肖龙飞,杨建民,岳子钰. 深海水力集矿球形颗粒受力特性试验研究[J]. 上海交通大学学报, 2019, 53(8): 907-912. |
[2] | 刘勇1,陈炉云2. 涡激振动对管道液固两相流流场的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 485-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||