上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (4): 565-578.doi: 10.16183/j.cnki.jsjtu.2023.026
黄鹤a,b, 胡凯益a,b, 杨澜c(), 王浩a,b, 高涛c, 王会峰b
收稿日期:
2023-01-19
修回日期:
2023-04-23
接受日期:
2023-04-28
出版日期:
2024-04-28
发布日期:
2024-04-30
通讯作者:
杨 澜,正高级工程师,博士生导师,电话(Tel.):029-82334579;E-mail: lanyang@chd.edu.cn.
作者简介:
黄 鹤(1979-),教授,博士生导师,从事图像处理与信息融合研究.
基金资助:
HUANG Hea,b, HU Kaiyia,b, YANG Lanc(), WANG Haoa,b, GAO Taoc, WANG Huifengb
Received:
2023-01-19
Revised:
2023-04-23
Accepted:
2023-04-28
Online:
2024-04-28
Published:
2024-04-30
摘要:
雾霾天气下,交通道路能见度低,导致所采集到的视频画面退化、图像信息模糊,同时考虑传统系统处理实时性不高等问题,基于ZYNQ平台设计了一种图像去雾系统,并应用于智能行车记录仪系统中.首先,针对传统暗通道去雾算法在天空区域存在失真等问题,提出了一种分割天空区域的策略来修正图像复原参数;然后,针对计算全局大气光值时,需对整幅图像的像素排序消耗大量资源的问题,利用现场可编程门阵列(FPGA)并行运算的优势,提出一种帧迭代方法优化求取大气光值,同时优化了引导滤波的硬件设计;最后,将双路高清多媒体接口(HDMI)资源中,一路作为视频输入,另一路作为视频处理输出,搭建实时交通图像视频处理试验平台.试验结果表明,系统针对雾霾天气下的交通视频具有较好的去雾效果,尤其是可以解决天空区域去雾的失真问题.在对分辨率为1 280 像素×720 像素的交通视频去雾时,可以达到30 帧/s的处理速度,满足实时性要求.
中图分类号:
黄鹤, 胡凯益, 杨澜, 王浩, 高涛, 王会峰. 智能行车记录仪图像去雾系统的FPGA设计[J]. 上海交通大学学报, 2024, 58(4): 565-578.
HUANG He, HU Kaiyi, YANG Lan, WANG Hao, GAO Tao, WANG Huifeng. FPGA Design of Image Defogging System in Intelligent Tachograph[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 565-578.
表2
去雾图像参数评价
实验组 | 去雾算法 | H | gA | rP | EFAD | 对比度 |
---|---|---|---|---|---|---|
E1 | 原始图像 | 12.600 0 | 2.844 9 | — | 1.992 0 | 53.387 8 |
He算法[ | 14.663 9 | 4.685 0 | 24.213 1 | 0.884 3 | 62.995 2 | |
Kim算法[ | 11.641 7 | 4.116 7 | 23.163 6 | 0.768 1 | 79.576 6 | |
刘算法[ | 13.156 0 | 2.935 5 | 35.343 3 | 1.873 8 | 54.430 2 | |
本文算法 | 14.974 4 | 4.846 3 | 26.071 3 | 0.760 2 | 81.383 2 | |
E2 | 原始图像 | 13.212 2 | 3.843 6 | — | 1.741 4 | 44.075 4 |
He算法[ | 14.781 8 | 6.420 3 | 24.200 1 | 0.749 9 | 51.237 1 | |
Kim算法[ | 13.719 7 | 6.038 4 | 25.274 1 | 0.856 5 | 63.087 5 | |
刘算法[ | 13.648 0 | 3.959 5 | 37.919 8 | 1.644 1 | 44.780 5 | |
本文算法 | 14.913 9 | 6.597 0 | 26.482 5 | 0.528 1 | 65.589 6 | |
E3 | 原始图像 | 10.693 7 | 3.469 8 | — | 2.181 4 | 50.887 0 |
He算法[ | 11.863 2 | 5.262 3 | 24.084 5 | 0.744 7 | 45.300 1 | |
Kim算法[ | 12.108 4 | 5.338 7 | 25.670 9 | 0.838 1 | 65.266 6 | |
刘算法[ | 11.076 4 | 3.576 7 | 33.060 1 | 2.081 9 | 51.540 2 | |
本文算法 | 12.861 7 | 5.386 7 | 26.276 1 | 0.632 0 | 67.045 0 | |
E4 | 原始图像 | 12.283 6 | 1.323 8 | — | 4.135 6 | 50.069 3 |
He算法[ | 14.207 5 | 3.277 0 | 17.995 6 | 0.966 2 | 50.141 4 | |
Kim算法[ | 12.504 7 | 3.151 3 | 18.171 8 | 0.749 6 | 79.225 2 | |
刘算法[ | 12.950 1 | 1.407 7 | 32.636 9 | 3.794 3 | 51.810 8 | |
本文算法 | 14.391 8 | 3.597 8 | 21.098 0 | 0.724 5 | 79.482 0 |
[1] | 苗开超, 姚叶青, 王传辉, 等. 一次导致重大交通事故的大雾天气成因分析[J]. 气象科技进展, 2021, 11(4): 23-27. |
MIAO Kaichao, YAO Yeqing, WANG Chuanhui, et al. Analysis of a dense fog event caused a fatal traffic accident[J]. Advances in Meteorological Science and Technology, 2021, 11(4): 23-27. | |
[2] | 王洁, 王顺吉, 侯刚. 基于Zynq的嵌入式数字图像处理系统设计[J]. 实验室科学, 2020, 23(4): 70-73. |
WANG Jie, WANG Shunji, HOU Gang. Design of embedded image system based on Z7 series[J]. Laboratory Science, 2020, 23(4): 70-73. | |
[3] | 黄鹤, 胡凯益, 郭璐, 等. 改进的海雾图像去除方法[J]. 哈尔滨工业大学学报, 2021, 53(8): 81-91. |
HUANG He, HU Kaiyi, GUO Lu, et al. Improved defogging algorithm for sea fog[J]. Journal of Harbin Institute of Technology, 2021, 53(8): 81-91. | |
[4] |
CAI B L, XU X M, JIA K, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
doi: 10.1109/TIP.2016.2598681 pmid: 28873058 |
[5] | 黄鹤, 胡凯益, 宋京, 等. 雾霾线求解透射率的二次优化方法[J]. 西安交通大学学报, 2021, 55(8): 130-138. |
HUANG He, HU Kaiyi, SONG Jing, et al. A twice optimization method for solving transmittance with haze-lines[J]. Journal of Xi’an Jiaotong University, 2021, 55(8): 130-138. | |
[6] | NAYAR S K, NARASIMHAN S G. Vision in bad weather[C]// Proceedings of the Seventh IEEE International Conference on Computer Vision. New York, NY, USA: IEEE, 2002:598-605. |
[7] |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
doi: 10.1109/TPAMI.2010.168 pmid: 20820075 |
[8] | 黄鹤, 李昕芮, 宋京, 等. 多尺度窗口的自适应透射率修复交通图像去雾方法[J]. 中国光学, 2019, 12(6): 1311-1320. |
HUANG He, LI Xinrui, SONG Jing, et al. A traffic image dehaze method based on adaptive transmittance estimation with multi-scale window[J]. Chinese Optics, 2019, 12(6): 1311-1320.
doi: 10.3788/co. URL |
|
[9] | 尹震宇, 徐光远, 张飞青, 等. 面向Zynq平台的卷积神经网络单元设计与实现[J]. 小型微型计算机系统, 2022, 43(2): 231-235. |
YIN Zhenyu, XU Guangyuan, ZHANG Feiqing, et al. Design and implementation of convolution neural network unit based on Zynq platform[J]. Journal of Chinese Computer Systems, 2022, 43(2): 231-235. | |
[10] | KIM J H, KIM C S. Approximate solution to optimized contrast enhancement for hazy image[C]// IEEE International Symposium on Consumer Electronics. Seoul, Korea: IEEE, 2014: 1-2. |
[11] | 刘倩, 陈茂银, 周东华. 基于单幅图像的快速去雾算法[C]// 中国控制与决策会议. 贵阳: 控制与决策编辑部, 2013: 3781-3786. |
LIU Qian, CHEN Maoyin, ZHOU Donghua. Fast haze removal from a single image[C]// Chinese Control and Decision Conference. Guiyang, China: Control and Decision, 2013: 3781-3786. | |
[12] | 刘光飞, 胡辽林. 暗通道先验去雾算法的改进及FPGA实现[J]. 西安理工大学学报, 2016, 32(1): 77-82. |
LIU Guangfei, HU Liaolin. Improvement and FPGA implementation of dark channel priori dehazing algorithm[J]. Journal of Xi’an University of Technology, 2016, 32(1): 77-82. | |
[13] | 龚亮, 孙俊喜, 顾播宇, 等. 基于FPGA的视频图像去雾系统的设计与实现[J]. 电视技术, 2013, 37(7): 6-8. |
GONG Liang, SUN Junxi, GU Boyu, et al. Design and implementation of haze removal system of video image based on FPGA[J]. Video Engineering, 2013, 37(7): 6-8. | |
[14] |
LIU H, HUANG D, HOU S, et al. Large size single image fast defogging and the real time video defogging FPGA architecture[J]. Neurocomputing, 2017, 269(20): 97-107.
doi: 10.1016/j.neucom.2016.09.139 URL |
[15] | BEGUM R, RAJAPRIYA S, KANNAN G. FPGA implementation and simulation of guided image filtering[C]// International Conference Icats. Thanjavur, India: ICATS, 2014:218-227. |
[16] |
黄文辉, 陈仁雷, 张家谋. 数字视频图像质量客观测量方法的改进与实现[J]. 北京邮电大学学报, 2005(4): 87-90.
doi: 10.13190/jbupt.200504.87.huangwh |
HUANG Wenhui, CHEN Renlei, ZHANG Jiamou. Improvement and implementation of objective digital video quality measurement[J]. Journal of Beijing University of Posts and Telecommunications, 2005(4): 87-90. | |
[17] |
黄鹤, 胡凯益, 李战一, 等. 融合MCAP和GRTV正则化的无人机航拍建筑物图像去雾方法[J]. 上海交通大学学报, 2023, 57(3): 366-378.
doi: 10.16183/j.cnki.jsjtu.2021.238 |
HUANG He, HU Kaiyi, LI Zhanyi, et al. An image dehazing method for UAV aerial photography of buildings combining MCAP and GRTV regularization[J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 366-378. | |
[18] |
CHOI L K, YOU J, BOVIK A C. Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3888-3901.
doi: 10.1109/TIP.2015.2456502 pmid: 26186784 |
[1] | 黄大荣,方周,赵玲. 一种改进的结合边缘检测的去雾新方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 861-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||