上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (3): 371-381.doi: 10.16183/j.cnki.jsjtu.2022.451

• 机械与动力工程 • 上一篇    下一篇

空冷式多级热电制冷器性能综合分析

孙悦桐, 孟凡凯(), 周林, 徐辰欣   

  1. 海军工程大学 动力工程学院,武汉 430033
  • 收稿日期:2022-11-07 修回日期:2023-01-07 接受日期:2023-02-10 出版日期:2024-03-28 发布日期:2024-03-28
  • 通讯作者: 孟凡凯,副教授;E-mail:mfk927@qq.com.
  • 作者简介:孙悦桐(2000-),硕士生,从事多级热电制冷技术研究.
  • 基金资助:
    国家自然科学基金(11974429);海军工程大学自主研发计划(425317T01C)

Comprehensive Analysis of Performance of Air Cooled Multistage Thermoelectric Cooler

SUN Yuetong, MENG Fankai(), ZHOU Lin, XU Chenxin   

  1. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
  • Received:2022-11-07 Revised:2023-01-07 Accepted:2023-02-10 Online:2024-03-28 Published:2024-03-28

摘要:

多级热电制冷器可提供更大的制冷温差,但制冷经济性能随级数增大而迅速降低.综合考虑热电材料各种内部效应与外部传热不可逆性,建立了空冷式多级热电制冷器的有限时间热力学模型,给出了制冷量和制冷系数的计算方法.为全面描述和分析多级热电制冷器性能,引入热力学完善度指标,并提出协调性能系数性能评价指标,分析了制冷器工作电流、热电臂横截面积与制冷温差对制冷量、制冷系数、热力学完善度和协调性能系数的影响.结果表明:当制冷温差为87 ℃时,电流分别为2.55 A和1.30 A时,热电臂横截面积分别为2.2 mm2和3.0 mm2时,制冷量和制冷系数分别达到最大值.综合考虑制冷能力与经济性,当电流为1.75 A时,可获得制冷量、耗功与制冷系数的最佳协调性能.

关键词: 多级热电制冷, 有限时间热力学, 热力学完善度, 协调性能, 性能优化

Abstract:

The multistage thermoelectric cooler can provide a larger temperature difference, but its refrigeration and economic performance decreases rapidly with the increase of stages. Considering all kinds of internal effects of thermoelectric materials and the irreversibility of external heat transfer, a finite time thermodynamic model of air cooling multistage thermoelectric cooler is established. The calculation method for cooling capacity and coefficient of performance are given. In order to describe and analyze the performance of multistage thermoelectric cooler comprehensively, the index thermodynamic perfectibility is introduced, and the performance evaluation index of coordinated performance coefficient is proposed. The effects of working current, cross-sectional area of thermoelectric leg and temperature difference on cooling capacity, coefficient of performance, thermodynamic perfectibility and coordination performance coefficient are analyzed. With the cooling temperature difference of 87 ℃, when the current is 2.55 A and 1.30 A respectively, and the cross-sectional area of the thermoelectric arm is 2.2 mm2 and 3.0 mm2 respectively, the cooling capacity and coefficient of performance reach the maximum respectively. Considering the refrigeration and economic performance, when the current is 1.75 A, the best coordination performance of cooling capacity, power consumption, and refrigeration coefficient can be obtained.

Key words: multistage thermoelectric cooling, finite time thermodynamics, thermodynamic perfectibility, coordination performance, performance optimization

中图分类号: