上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (11): 1674-1686.doi: 10.16183/j.cnki.jsjtu.2023.147
收稿日期:
2023-04-20
修回日期:
2023-07-13
接受日期:
2023-08-07
出版日期:
2024-11-28
发布日期:
2024-12-02
通讯作者:
孙 聪,副教授;E-mail:作者简介:
杨 春(1994—),博士生,从事泵喷推进器水动力性能数值研究.
基金资助:
YANG Chun1, GUO Chunyu2, SUN Cong1(), WANG Chao1, YUE Qihui1
Received:
2023-04-20
Revised:
2023-07-13
Accepted:
2023-08-07
Online:
2024-11-28
Published:
2024-12-02
摘要:
由于泵喷推进器转子与导管之间有间隙的存在,内流场特性较复杂.为了探究尺度效应对泵喷推进器间隙流场的影响,采用非定常雷诺平均Navier-Stokes(URANS)方程和SST k-ω 湍流模型,利用全结构化网格对计算域进行离散处理,滑移网格用于处理转子和其他部件之间的相对运动.首先通过网格不确定分析来验证本文数值方法的可行性,数值计算结果与模型试验数据进行了比较,两者吻合良好;然后对3种尺度泵喷推进器模型的敞水性能进行了数值计算,从涡量场和压力场的角度进行了分析.结果表明,全进速系数下,实尺度模型的效率会提高;实尺度模型的叶梢泄漏涡(TLV)涡量溃灭提前,涡量强度更低,并且TLV涡核中心压力系数更小,间隙间的脉动压力幅值更低.
中图分类号:
杨春, 郭春雨, 孙聪, 王超, 岳启辉. 泵喷推进器间隙流场尺度效应数值研究[J]. 上海交通大学学报, 2024, 58(11): 1674-1686.
YANG Chun, GUO Chunyu, SUN Cong, WANG Chao, YUE Qihui. Numerical Study of Scale Effects of Tip Clearance Flow Field of Pump-Jet Propulsor[J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1674-1686.
[1] | QIU C, PAN G, HUANG Q, et al. Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 102-115. |
[2] | LU L, PAN G, SAHOO P K. CFD prediction and simulation of a pumpjet propulsor[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8: 110-116. |
[3] | LI H, HUANG Q, PAN G, et al. Assessment of transition modeling for the unsteady performance of a pump-jet propulsor in model scale[J]. Applied Ocean Research, 2021, 108: 102537. |
[4] | 潘中永, 吴涛涛, 潘希伟, 等. 斜流式泵喷水推进器内部流动不稳定性分析[J]. 华中科技大学学报(自然科学版), 2012, 40(9): 118-121. |
PAN Zhongyong, WU Taotao, PAN Xiwei, et al. Instability analysis of internal flow in mixed-flow pump waterjet propulsion[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(9): 118-121. | |
[5] | 徐顺, 龙新平, 季斌, 等. 轴流式喷水推进泵内涡与空化相互作用[J]. 哈尔滨工程大学学报, 2020, 41(7): 951-957. |
XU Shun, LONG Xinping, JI Bin, et al. Investigation on the mechanism between vortex and cavitation in an axial waterjet pump[J]. Journal of Harbin Engineering University, 2020, 41(7): 951-957. | |
[6] | 徐顺, 季斌, 龙新平, 等. 不同来流工况下泵喷推进器外流场特性分析[J]. 水动力学研究与进展A辑, 2020, 35(4): 411-419. |
XU Shun, JI Bin, LONG Xinping, et al. Analysis of the flow characteristics of pump-jet propeller under different inflow conditions[J]. Chinese Journal of Hydrodynamics, 2020, 35(4): 411-419. | |
[7] | 张明宇, 俞伟强, 石钰. 泵喷推进器抗空化性能分析[J]. 船舶工程, 2021, 43(1): 50-55. |
ZHANG Mingyu, YU Weiqiang, SHI Yu. Anti-cavition performance analysis of pumpjet propulsor[J]. Ship Engineering, 2021, 43(1): 50-55. | |
[8] | 张凯, 叶金铭. 基于凹槽结构的泵喷推进器梢涡控制效果及计算方法[J]. 舰船科学技术, 2020, 42(3): 57-62. |
ZHANG Kai, YE Jinming. Research on the tip vortex control effect and calculation method of pump-jet thruster based on groove structure[J]. Ship Science and Technology, 2020, 42(3): 57-62. | |
[9] | 李福正, 黄桥高, 潘光, 等. 不同转速下前置泵喷推进器性能对比[J]. 西北工业大学学报, 2021, 39(5): 945-953. |
LI Fuzheng, HUANG Qiaogao, PAN Guang, et al. Comparative analysis of the hydrodynamic performance of pre-swirl pump-jet propulsor under different rotational speeds[J]. Journal of Northwestern Polytechnical University, 2021, 39(5): 945-953. | |
[10] | LI F Z, HUANG Q, PAN G, et al. Influence of various stator parameters on the open-water performance of pump-jet propulsion[J]. Journal of Marine Science and Engineering, 2021, 9: 1396. |
[11] | JI X, DONG X, YANG C. Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: A numerical study[J]. Applied Ocean Research. 2021, 112: 102723. |
[12] | 潘光, 胡斌, 王鹏, 等. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报, 2013, 47(6): 932-937. |
PAN Guang, HU Bin, WANG Peng, et al. Numerical simulation of steady hydrodynamic performance of a pump-jet propulsor[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 932-937. | |
[13] | 鹿麟, 潘光. 泵喷推进器非定常空化性能数值模拟分析[J]. 上海交通大学学报, 2015, 49(2): 262-268. |
LU Lin, PAN Guang. Numerical simulation analysis of unsteady cavition performance of a pump-jet propulsor[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 262-268. | |
[14] | 施瑶, 潘光, 王鹏, 等. 泵喷推进器空化特性数值分析[J]. 上海交通大学学报, 2014, 48(8): 1059-1064. |
SHI Yao, PAN Guang, WANG Peng, et al. Numerical simulation of cavition characteristics of a pump-jet propeller[J]. Journal of Shanghai Jiao Tong University, 2014, 48(8): 1059-1064. | |
[15] | WANG C, WENG K, GUO C, et al. Prediction of hydrodynamic performance of pump propeller considering the effect of tip vortex[J]. Ocean Engineering, 2019, 171: 259-272. |
[16] | ABDEL-MAKSOUD M, HEINKE H J. Scale effects on ducted propellers[C]//In Proceedings of 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan:[s.n.], 2002: 744-759. |
[17] | BHATTACHARYYA A, KRASILNIKOV V, STEEN S. Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs[J]. Ocean Engineering, 2016, 112: 226-242. |
[18] | CHOI J K, PARK H G, KIM H T. A numerical study of scale effects on performance of a tractor type podded propeller[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6: 380-391. |
[19] | YAO H, ZHANG H. Numerical simulation of boundary-layer transition flow of a model propeller and the full-scale propeller for studying scale effects[J]. Journal of Marine Science and Technology, 2018, 23: 1004-1018. |
[20] | YANG Q, WANG Y, ZHANG Z. Scale effects on propeller cavitating hydrodynamic and hydroacoustic performances with non-uniform inflow[J]. Chinese Journal of Mechanical Engineering, 2013, 26: 414-426. |
[21] | LI H, HUANG Q, PAN G, et al. The scale effects on the open water performance of a pump-jet propulsor[J]. Journal of Marine Science and Technology, 2022, 27: 348-367. |
[22] | YANG J, FENG D, LIU L, et al. Research on the performance of pumpjet propulsor of different scales[J]. Journal of Marine Science and Engineering, 2022, 10(1): 78. |
[23] | 阳峻, 冯大奎, 张航, 等. 泵喷式推进器数值模拟及尺度效应分析[J]. 中国造船, 2020, 61 (Sup.2): 91-99. |
YANG Jun, FENG Dakui, ZHANG Hang, et al. Numerical simulation of pump jet propulsor and analysis of scale effect[J]. Shipbuilding of China, 2020, 61 (Sup.2): 91-99. | |
[24] | SHIRAZI A T, NAZARI M R, MANSHADI M D. Numerical and experimental investigation of the fluid flow on a full-scale pump jet thruster[J]. Ocean Engineering, 2019, 182: 527-539. |
[25] | 孙明宇, 董小倩, 杨晨俊. 泵喷推进器水动力尺度效应数值仿真与分析[J]. 水下无人系统学报, 2020, 28(5): 538-546. |
SUN Mingyu, DONG Xiaoqian, YANG Chenjun. Numerical simulation and analysis of hydrodynamic scale effect of pump-jet propulsor[J]. Shipbuilding of China, 2020, 28(5): 538-546. | |
[26] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
[27] | BALTAZAR J M, RIJPKEMA D, FALCÃO DE CAMPOS J, et al. Prediction of the open-water performance of ducted propellers with a panel method[J]. Journal of Marine Science and Engineering, 2018, 6(1): 27. |
[28] | CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering: Transactions of the ASME, 2008, 130(7): 1-4. |
[1] | 刘义,邹早建,郭海鹏. 基于两种螺旋桨建模方法的全附体船模斜拖试验数值模拟[J]. 上海交通大学学报(自然版), 2019, 53(4): 423-430. |
[2] | 姚慧岚, 张怀新. 较低雷诺数下ITTC尺度效应换算方法的改进[J]. 上海交通大学学报, 2019, 53(1): 35-41. |
[3] | 蒲汲君,熊鹰,王睿. 三维水翼初始梢涡空泡数的尺度效应[J]. 上海交通大学学报(自然版), 2017, 51(3): 374-. |
[4] | 王展智,熊鹰,黄政,王睿. 双桨船轴向伴流场尺度效应的数值研究[J]. 上海交通大学学报(自然版), 2015, 49(04): 457-463. |
[5] | 王展智1,熊鹰1,孙海涛2,黄政1,王睿1. 双桨船附体阻力尺度效应[J]. 上海交通大学学报(自然版), 2015, 49(02): 255-261. |
[6] | 鹿麟,潘光. 泵喷推进器非定常空化性能数值模拟分析[J]. 上海交通大学学报(自然版), 2015, 49(02): 262-268. |
[7] | 周振龙,朱锡,张帅. 螺旋桨CFD不确定度及叶形对桨叶变形的影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 74-80. |
[8] | 施瑶,潘光,王鹏,杜晓旭. 泵喷推进器空化特性数值分析[J]. 上海交通大学学报(自然版), 2014, 48(08): 1059-1064. |
[9] | 田文龙,宋保维,毛昭勇. 水下航行器海流发电装置叶轮的数值仿真[J]. 上海交通大学学报(自然版), 2013, 47(08): 1306-1311. |
[10] | 董小倩,杨晨俊. 吊舱推进器桨毂间隙影响的数值分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
[11] | 潘光1,胡斌1,2,王鹏1,杨智栋1,王一云1. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
[12] | 于宪钊1, 2, 苏玉民1. 基于滑移网格技术的串列翼推进性能分析[J]. 上海交通大学学报(自然版), 2012, 46(08): 1315-1319. |
[13] | 杨琼方, 王永生, 黄斌, 刘登成. 融合升力线理论和雷诺时均模拟在螺旋桨设计和 水动力性能预报中的应用[J]. 上海交通大学学报(自然版), 2011, 45(04): 486-493. |
[14] | 胡鹏,彭林法,来新民,张卫刚. 薄板微冲压成形失稳分析与实验研究 [J]. 上海交通大学学报(自然版), 2011, 45(01): 11-0014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||