上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (8): 1086-1095.doi: 10.16183/j.cnki.jsjtu.2022.022
所属专题: 《上海交通大学学报》2023年“材料科学与工程”专题
收稿日期:
2022-01-24
修回日期:
2022-04-07
接受日期:
2022-05-05
出版日期:
2023-08-28
发布日期:
2023-08-31
通讯作者:
李子然,副教授;E-mail: 作者简介:
王银龙(1995-),博士生,从事橡胶、轮胎力学研究.
基金资助:
WANG Yinlong1,2, LI Zhao3, LI Ziran1,2(), WANG Yang1,2
Received:
2022-01-24
Revised:
2022-04-07
Accepted:
2022-05-05
Online:
2023-08-28
Published:
2023-08-31
摘要:
为了探究未硫化橡胶的拉伸力学性能,开展了未硫化橡胶不同应变率下的单向拉伸及循环加卸载实验.结果表明,未硫化橡胶具有较为复杂的非线性黏弹塑性力学行为,随着应变率增加,应力水平明显上升,迟滞效应增加,残余应变降低,应力软化增强.为了表征其力学响应,提出了一个三网络(TN)黏弹塑性本构模型,该模型由一个基于八链模型的超弹性网络和两个基于Bergstr?m-Boyce流动模型的非线性黏塑性网络构成,同时考虑了材料的Mullins损伤软化等变形特征,能够较好地表征未硫化橡胶的非线性力学行为.最后,依托于Abaqus有限元软件,完成了本构模型材料子程序的开发,对未硫化橡胶多段松弛加卸载和轮胎胎面胶压入模具过程开展了数值仿真,验证了TN模型的数值有效性以及在复杂变形模式下的数值稳定性.
中图分类号:
王银龙, 李钊, 李子然, 汪洋. 未硫化橡胶黏弹塑性本构模型及有限元实现[J]. 上海交通大学学报, 2023, 57(8): 1086-1095.
WANG Yinlong, LI Zhao, LI Ziran, WANG Yang. A Visco-Elastoplastic Constitutive Model of Uncured Rubber and Its Finite Element Implementation[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1086-1095.
表1
三网络模型拟合参数
参数名称 | 参数符号 | 参数值 | 参数取值区间 |
---|---|---|---|
切变模量 | G0B, G0C /MPa | 1.562 2, 0.403 87 | >0 |
链段密度 | NB, NC | 9.610 1 | (1, 10) |
体积模量 | K/MPa | 180.656 | >0 |
流动阻力 | 1.311 8, 5.810 4 | >0 | |
流动指数 | mB, mC | 2.340 1, 5.610 7 | (1, 20) |
B、C网络模量缩放因子 | α, h | 1.254 2, 2.681 4 | (1, 10) |
A网络模量因子 | C4, C5, C6 | 0.367 4, 17.185 9, 2.292 1 | — |
A网络模量因子 | C7, C8, C9 | 1.048 1, 0.354 1,-0.052 4 | — |
[1] | MARK J E, ERMAN B, ROLAND C M, et al. The science and technology of rubber[M]. 4th ed. Waltham: Academic Press, 2013: 337-340. |
[2] | 董义军. 农业子午线轮胎成型胎坯质量缺陷原因分析与解决措施[J]. 轮胎工业, 2021, 41(5): 327-330. |
DONG Yijun. Cause analysis and solutions of green tire quality defects of agricultural radial tire[J]. Tire Industry, 2021, 41(5): 327-330. | |
[3] |
ANDRZEJ W, MICHAL O, SEWERYN K, et al. Characteristics and investigation of selected manufacturing defects of passenger car tires[J]. Transportation Research Procedia, 2019, 40: 119-126.
doi: 10.1016/j.trpro.2019.07.020 URL |
[4] |
KALISKE M, ZOPF C, BRÜGGEMANN C. Experimental characterization and constitutive modeling of the mechanical properties of uncured rubber[J]. Rubber Chemistry and Technology, 2010, 83(1): 1-15.
doi: 10.5254/1.3548264 URL |
[5] | FENG X J, WEI Y T, LI Z C, et al. Research on nonlinear viscoelastic constitutive model for uncured rubber[J]. Engineering Mechanics, 2016, 33: 212-219. |
[6] | DAL H, ZOPF C, KALISKE M. Micro-sphere based viscoplastic constitutive model for uncured green rubber[J]. International Journal of Solids and Structures, 2018, 132-133: 201-217. |
[7] |
ZOPF C, KALISKE M. Numerical characterisation of uncured elastomers by a neural network based approach[J]. Computers & Structures, 2017, 182: 504-525.
doi: 10.1016/j.compstruc.2016.12.012 URL |
[8] |
ZOPF C, HOQUE S E, KALISKE M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science, 2015, 98: 287-296.
doi: 10.1016/j.commatsci.2014.11.012 URL |
[9] | CHEN L, ZHOU W, ZHOU H, et al. Radial tire construction design method based on finite element simulation[J]. Journal of Donghua University, 2017, 34(03): 150-157. |
[10] | 王国林, 周伟, 周海超, 等. 子午线轮胎二次法成型过程仿真[J]. 机械设计与制造, 2017(7): 179-182. |
WANG Guolin, ZHOU Wei, ZHOU Haichao, et al. Simulation of the radial tire second-stage building process[J]. Machinery Design & Manufacture, 2017(7): 179-182. | |
[11] |
ZHOU H, WANG G, WANG Y. Wide-base tire-building process and design optimization using finite element analysis[J]. Tire Science and Technology, 2018, 46(4): 242-259.
doi: 10.2346/tire.18.460405 URL |
[12] |
KIM S, BERGER T, KALISKE M. Strain rate-dependent behavior of uncured rubber: Experimental investigation and constitutive modeling[DB/OL]. (2022-01-04)[2022-04-05]. https//doi.org/10.5254/rct.21.78981.
doi: https//doi.org/10.5254/rct.21.78981 |
[13] |
LI Z, WANG Y, LI X, et al. Experimental investigation and constitutive modeling of uncured carbon black filled rubber at different strain rates[J]. Polymer Testing, 2019, 75: 117-126.
doi: 10.1016/j.polymertesting.2019.02.005 URL |
[14] |
WANG Y, LI Z, LI X, et al. Effect of the temperature and strain rate on the tension response of uncured rubber: Experiments and modeling[J]. Mechanics of Materials, 2020, 148: 103480.
doi: 10.1016/j.mechmat.2020.103480 URL |
[15] |
GUO L, WANG Y. High-rate tensile behavior of silicone rubber at various temperatures[J]. Rubber Chemistry and Technology, 2020, 93(1): 183-194.
doi: 10.5254/rct.19.81562 URL |
[16] | 魏明杰, 王银龙, 刘敏, 等. 温度影响下炭黑增强橡胶复合材料的循环拉伸力学行为[J]. 实验力学, 2020, 35(6): 1030-1040. |
WEI Mingjie, WANG Yinlong, LIU Min, et al. Temperature effect on the mechanical behavior of carbon black reinforced rubber composites under cyclic tensile loadings[J]. Journal of Experimental Mechanics, 2020, 35(6): 1030-1040. | |
[17] |
GUO Q, ZAÏRI F, GUO X. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model formulation and numerical examples[J]. International Journal of Plasticity, 2018, 101: 106-124.
doi: 10.1016/j.ijplas.2017.10.011 URL |
[18] | BERGSTRÖM J S. Mechanics of solid polymers: Theory and computational modeling[M]. Norwich: William Andrew Publishing, 2015: 141-150. |
[19] |
JARRAH H R, ZOLFAGHARIAN A, HEDAYATI R, et al. Nonlinear finite element modelling of thermo-visco-plastic styrene and polyurethane shape memory polymer foams[J]. Actuators, 2021, 10(3): 46.
doi: 10.3390/act10030046 URL |
[20] |
BOYCE M C, WEBER G G, PARKS D M. On the kinematics of finite strain plasticity[J]. Journal of the Mechanics and Physics of Solids, 1989, 37(5): 647-665.
doi: 10.1016/0022-5096(89)90033-1 URL |
[21] | CARROLL M M. Molecular chain networks and strain energy functions in rubber elasticity[J]. Philosophical Transactions of the Royal Society A, 2019, 377(2144): 20180067. |
[22] |
MELLY S K, LIU L, LIU Y, et al. A review on material models for isotropic hyperelasticity[J]. International Journal of Mechanical System Dynamics, 2021, 1(1): 71-88.
doi: 10.1002/msd2.v1.1 URL |
[23] |
XIANG Y, ZHONG D, RUDYKH S, et al. A review of physically based and thermodynamically based constitutive models for soft materials[J]. Journal of Applied Mechanics, 2020, 87(11): 110801.
doi: 10.1115/1.4047776 URL |
[24] |
GILLES M, ERWAN V. Comparison of hyperelastic models for rubber-like materials[J]. Rubber Chemistry and Technology, 2006, 79(5): 835-858.
doi: 10.5254/1.3547969 URL |
[25] |
ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412.
doi: 10.1016/0022-5096(93)90013-6 URL |
[26] |
MARCKMANN G, VERRON E, GORENT L, et al. A theory of network alteration for the Mullins effect[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 2011-2028.
doi: 10.1016/S0022-5096(01)00136-3 URL |
[27] |
KHAJEHSAEID H. Development of a network alteration theory for the Mullins-softening of filled elastomers based on the morphology of filler-chain interactions[J]. International Journal of Solids and Structures, 2016, 80: 158-167.
doi: 10.1016/j.ijsolstr.2015.10.032 URL |
[28] |
VYAZOVKIN S, SBIRRAZZUOLI N. Isoconversional kinetic analysis of thermally stimulated processes in polymers[J]. Macromolecular Rapid Communications, 2010, 27(18): 1515-1532.
doi: 10.1002/(ISSN)1521-3927 URL |
[29] |
ROBERTS A P, GARBOCZI E J. Elastic properties of model random three-dimensional open-cell solids[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(1): 33-55.
doi: 10.1016/S0022-5096(01)00056-4 URL |
[30] | BERGSTRÖM J S. A library of advanced user materials: Version 5.0.0[EB/OL]. (2018-04-17) [2022-04-05]. http//PolyUMod.com/. |
[31] |
DREHER M L, NAGARAJA S, BERGSTRÖM J S, et al. Development of a flow evolution network model for the stress-strain behavior of poly(L-lactide)[J]. Journal of Biomechanical Engineering, 2017, 139(9): 091002.
doi: 10.1115/1.4037071 URL |
[32] | TOMAS I, CISILINO A P, FRONTINI P M. Accurate, efficient and robust explicit and implicit integration schemes for the Arruda-Boyce viscoplastic model[J]. Mecnica Computacional, 2008, 14: 1003-1042. |
[1] | 赵洪, 谢友均, 龙广成, 李宁, 张嘉伟, 程智清. 冲击荷载作用下含黏结界面混凝土破坏特征与应力应变分析[J]. 上海交通大学学报, 2022, 56(9): 1208-1217. |
[2] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[3] | 张硕,叶冠林,甄亮,李明广,陈超斌. 考虑小应变下刚度衰减特征的软土本构模型[J]. 上海交通大学学报, 2019, 53(5): 535-539. |
[4] | 俞建超,林有希. 高速加工中无氧铜的动态力学性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 587-592. |
[5] | 王立冬1,魏冉2,徐鹏2,赵科新2,彭雄奇1. 基于温度的隔膜超弹性本构模型[J]. 上海交通大学学报(自然版), 2017, 51(9): 1025-1030. |
[6] | 仲健林1,马大为1,任杰1,李士军2,王旭3. 基于平面应变假设的橡胶圆筒静态受压分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1276-1280. |
[7] | 阎昱,王海波,赵溦. 与应变速率相关的DP980高强度钢板辊弯成形的本构模型建立[J]. 上海交通大学学报(自然版), 2015, 49(01): 7-11. |
[8] | 陈鸣1,彭雄奇1,石少卿2,杨华正3. 薄膜超弹性本构模型及其在空气垫中的应用[J]. 上海交通大学学报(自然版), 2014, 48(06): 883-887. |
[9] | 只悦胜,胡成亮,赵震,李世龙. 20CrMnTiH本构模型的建立及验证[J]. 上海交通大学学报(自然版), 2013, 47(11): 1697-1701. |
[10] | 尹冀,朱平,章斯亮. 考虑应变率效应的钢制车轮冲击仿真与试验[J]. 上海交通大学学报(自然版), 2013, 47(06): 967-971. |
[11] | 林蔚, 颜国正. 驻留-伸缩式胃肠道微型机器人的临界步距模型与实验分析[J]. 上海交通大学学报(自然版), 2013, 47(04): 656-662. |
[12] | 鲁佳宝, 赵社戌. PC/ABS高分子合金材料的热黏塑性内时本构模型[J]. 上海交通大学学报(自然版), 2011, 45(10): 1465-1468. |
[13] | 牛建辉,朱平,郭永进. 热镀锌双相钢DP590力学特性及其本构模型 [J]. 上海交通大学学报(自然版), 2010, 44(10): 1382-1387. |
[14] | 马秋,于爽,苏旭明,于忠奇. 热塑性聚烯烃大变形行为建模及数值模拟 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1155-1158. |
[15] | 魏志刚,汤文成,严斌,杨宝宽. 基于次弹性模型的三维牙周膜建模仿真研究 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1125-1129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||