上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (6): 666-679.doi: 10.16183/j.cnki.jsjtu.2022.065

所属专题: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题

• 船舶海洋与建筑工程 • 上一篇    下一篇

浅海风-浪-流-海床耦合场非定常时空演化规律及评价指标

陈静, 柯世堂(), 李文杰, 朱庭瑞, 员亦雯, 任贺贺   

  1. 南京航空航天大学 土木与机场工程系;江苏省机场基础设施安全工程研究中心, 南京 211106
  • 收稿日期:2022-03-14 修回日期:2022-05-12 接受日期:2022-06-06 出版日期:2023-06-28 发布日期:2023-07-05
  • 通讯作者: 柯世堂 E-mail:keshitang@163.com.
  • 作者简介:陈 静(1998-),硕士生,主要从事风浪环境与海上机场研究.
  • 基金资助:
    国家重点研发计划项目子课题(2019YFB1503701);国家重点研发计划项目子课题(2017YFE0132000);国家自然科学基金项目(52078251);江苏省自然科学基金项目(BK20210309);江苏省自然科学基金项目(BK20211518);江苏省研究生科研与实践创新计划项目(KYCX21_0234);南京航空航天大学研究生科研与实践创新计划项目(xcxjh20210719)

Unsteady Evolution Law and Evaluation Index of Shallow Sea Wind-Wave-Current-Seabed Coupling Field

CHEN Jing, KE Shitang(), LI Wenjie, ZHU Tingrui, YUN Yiwen, REN Hehe   

  1. Department of Civil and Airport Engineering;Jiangsu Airport Infrastructure Safety Engineering Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2022-03-14 Revised:2022-05-12 Accepted:2022-06-06 Online:2023-06-28 Published:2023-07-05
  • Contact: KE Shitang E-mail:keshitang@163.com.

摘要:

浅海地区海床地貌与波浪场、海流场和风场之间存在很强的实时耦合作用,现有分析模型无法直接考虑海床的影响因素,更难以解释典型海床地貌与海浪、剪切流和梯度风耦合场的非定常演化机理.基于STAR-CCM+平台二次开发,构建了海底平原、海底斜坡、海槽和平坦地貌4种典型海床地貌条件下的浅海风-浪-流数值水池;提出多层质点速度耦合方法并建立了多层风-浪-流耦合模型,在初始时刻即实现了风-浪-流场解耦,对比分析了各海床地貌下波浪场、海流场和风场的时空演化规律;引入主成分分析法对各典型海床地貌下风-浪-流非定常效应进行评价,建立风-浪-流-海床耦合场全生命周期非定常评价指标.结果表明:多层风-浪-流耦合模型能更真实反映垂向风速和流速分布不均匀对波浪场的影响;海床地貌会导致波浪场在演变过程呈多阶段时程分布,其中平坦地貌、海底斜坡和海槽工况共分为波面激增、衰减和稳定阶段,海底平原工况分为外破波、内破波和爬坡阶段;海流场在演变过程呈多段式空间分布,海床导致海流场形成多涡积聚或多涡共存的现象;风-浪-流-海床耦合演化对风剖面指数产生放大作用,海床床面高度与风剖面系数成正比关系;平坦地貌、海底平原、海底斜坡和海槽的演化终期非定常评价指标分别为0.268、4.612、0.672和0.926.

关键词: 浅海地区, 风-浪-流-海床耦合场, 风-浪-流场解耦, 非定常演化规律, 评价指标

Abstract:

There is a strong real-time coupling between seabed topography and wave field, current field and wind field in shallow water area. The existing analysis model cannot directly consider the influence factors of seabed, and it is more difficult to explain the unsteady evolution mechanism of the coupling field between typical seabed topography and wave, shear flow and gradient wind. Based on the secondary development of STAR-CCM+platform, the shallow sea wind-wave-current numerical pool is constructed under four typical seabed landform conditions: seabed plain, seabed slope, trough, and flat landform. The multi-layer particle velocity coupling method is proposed and the multi-layer wind-wave-current coupling model is established. The wind-wave-current decoupling is realized at the initial time. The temporal and spatial evolution laws of wave field, current field, and wind field in different seabed topographies are compared and analyzed. The principal component analysis method is introduced to evaluate the unsteady effect of wind-wave-current in various typical seabed topographies, and the unsteady evaluation index of the whole life cycle of the wind-wave-current-seabed coupling field is established. The results show that the multi-layer wind-wave-current coupling model can more truly reflect the influence of vertical wind speed and uneven velocity distribution on wave field. The seabed topography can lead to a multi-stage time-history distribution of wave field in the evolution process. The flat topography, submarine slope, and trough conditions are divided into wave surface surge, attenuation, and stability stages. The submarine plain conditions are divided into external breaking wave, internal breaking wave, and climbing stage. The evolution of the current field presents a multi-stage spatial distribution, and the seabed leads to the formation of multi-vortex accumulation or multi-vortex coexistence in the current field. The coupling evolution of wind-wave-current-seabed has an amplification effect on the wind profile index, and positive relationship between seabed height and wind profile coefficient. The end-stage unsteady evaluation indices of flat landform, submarine plain, submarine slope, and trough are 0.268, 4.612, 0.672, and 0.926, respectively.

Key words: shallow sea area, wind-wave-current-seabed coupling field, wind-wave-flow decoupling, unsteady evolution law, evaluation indicators

中图分类号: