上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (6): 642-652.doi: 10.16183/j.cnki.jsjtu.2021.488
所属专题: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
陈昊1, 戴孟祎1, 韩兆龙1,2,3,4(), 周岱1,2,3, 包艳1,2,3, 涂佳黄5
收稿日期:
2021-12-03
修回日期:
2021-12-31
接受日期:
2022-01-19
出版日期:
2023-06-28
发布日期:
2023-07-05
通讯作者:
韩兆龙
E-mail:han.arkey@sjtu.edu.cn.
作者简介:
陈 昊(1997-),硕士生,从事垂直轴风力机气动性能优化研究.
基金资助:
CHEN Hao1, DAI Mengyi1, HAN Zhaolong1,2,3,4(), ZHOU Dai1,2,3, BAO Yan1,2,3, TU Jiahuang5
Received:
2021-12-03
Revised:
2021-12-31
Accepted:
2022-01-19
Online:
2023-06-28
Published:
2023-07-05
Contact:
HAN Zhaolong
E-mail:han.arkey@sjtu.edu.cn.
摘要:
垂直轴风力机较低的风能利用率是限制其工程化应用的主要原因,为了提高其风能转化率、降低气动荷载,针对叶尖速比为2.65的中等值条件下带尾缘襟翼的大型垂直轴风力机提出了一种改进的气动性能优化模型,采用SST k-ω湍流模型进行数值模拟.研究结果表明:与原始模型相比,考虑桨距和襟翼协同运动下优化模型的功率系数可提高12.2%;此外,桨距和襟翼的协同运动可以显著减少作用在风力机整机上的推力和侧向力,与原始模型相比分别减少了12.4%和7.5%,推力和侧向力的波动幅值也要明显低于原始模型,这将有助于降低作用在风力机整机上的疲劳荷载.该模型有望在兆瓦级大型垂直轴风力机上得到应用.
中图分类号:
陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652.
CHEN Hao, DAI Mengyi, HAN Zhaolong, ZHOU Dai, BAO Yan, TU Jiahuang. Aerodynamic Performance Optimization of MW-Level Large Vertical Axis Wind Turbine with Trailing Edge Flaps[J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 642-652.
[1] |
MITTAL P, MITRA K. Determining layout of a wind farm with optimal number of turbines: A decomposition based approach[J]. Journal of Cleaner Production, 2018, 202: 342-359.
doi: 10.1016/j.jclepro.2018.08.093 URL |
[2] |
BRETON S P, MOE G. Status, plans and technologies for offshore wind turbines in Europe and North America[J]. Renewable Energy, 2009, 34(3): 646-654.
doi: 10.1016/j.renene.2008.05.040 URL |
[3] |
THÉ J, YU H S. A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods[J]. Energy, 2017, 138: 257-289.
doi: 10.1016/j.energy.2017.07.028 URL |
[4] |
HAND B, CASHMAN A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application[J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100646.
doi: 10.1016/j.seta.2020.100646 URL |
[5] |
HAND B, KELLY G, CASHMAN A. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110699.
doi: 10.1016/j.rser.2020.110699 URL |
[6] |
OTTERMO F, BERNHOFF H. An upper size of vertical axis wind turbines[J]. Wind Energy, 2014, 17(10): 1623-1629.
doi: 10.1002/we.1655 URL |
[7] | 郝文星, 李春, 刘青松, 等. 风力机叶片气动降载与流动分离控制技术综述[J]. 热能动力工程, 2019, 34(9): 1-13. |
HAO Wenxing, LI Chun, LIU Qingsong, et al. Review of aerodynamic load reduction and flow separation control technology for wind turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 1-13. | |
[8] |
REZAEIHA A, MONTAZERI H, BLOCKEN B. Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades[J]. Energy, 2018, 165: 1129-1148.
doi: 10.1016/j.energy.2018.09.192 URL |
[9] |
CHEN B, SU S S, VIOLA I M, et al. Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades[J]. Ocean Engineering, 2018, 155: 75-87.
doi: 10.1016/j.oceaneng.2018.02.038 URL |
[10] |
ABDALRAHMAN G, MELEK W, LIEN F S. Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)[J]. Renewable Energy, 2017, 114: 1353-1362.
doi: 10.1016/j.renene.2017.07.068 URL |
[11] |
LI C, XIAO Y Q, XU Y L, et al. Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations[J]. Applied Energy, 2018, 212: 1107-1125.
doi: 10.1016/j.apenergy.2017.12.035 URL |
[12] | 季康, 李春, 阳君, 等. 尾缘襟翼动态气动特性与控制策略研究[J]. 太阳能学报, 2017, 38(7): 1912-1920. |
JI Kang, LI Chun, YANG Jun, et al. Research on dynamic aerodynamic performance and flow control of airfoil with flap[J]. Acta Energiae Solaris Sinica, 2017, 38(7): 1912-1920. | |
[13] | 叶舟, 宋建业, 刘天亮, 等. 基于多岛遗传算法的襟翼优化[J]. 热能动力工程, 2017, 32 (Sup.1): 80-85. |
YE Zhou, SONG Jianye, LIU Tianliang, et al. Optimization of flap based on the multi-island genetic algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32 (Sup.1): 80-85. | |
[14] | RACITI CASTELLI M, ARDIZZON G, BATTISTI L, et al. Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, Canada: ASME, 2012: 409-418. |
[15] | PARASCHIVOIU I. Wind turbine design with emphasis on Darrieus concept[M]. Montréal: Presses inter Polytechnique, 2002. |
[16] | BACHANT P, WOSNIK M, GUNAWAN B, et al. Experimental study of a reference model vertical-axis cross-flow turbine[J]. PLoS One, 2016, 11(9): e0163799. |
[17] |
SU J, CHEN Y R, HAN Z L, et al. Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines[J]. Applied Energy, 2020, 260: 114326.
doi: 10.1016/j.apenergy.2019.114326 URL |
[18] |
SOBHANI E, GHAFFARI M, MAGHREBI M J. Numerical investigation of dimple effects on darrieus vertical axis wind turbine[J]. Energy, 2017, 133: 231-241.
doi: 10.1016/j.energy.2017.05.105 URL |
[19] |
SAGHARICHI A, ZAMANI M, GHASEMI A. Effect of solidity on the performance of variable-pitch vertical axis wind turbine[J]. Energy, 2018, 161: 753-775.
doi: 10.1016/j.energy.2018.07.160 URL |
[20] | PATANKAR S V. Numerical heat transfer and fluid flow[M]. Boca Raton: CRC Press, 2018. |
[21] |
SU J, LEI H, ZHOU D, et al. Aerodynamic noise assessment for a vertical axis wind turbine using improved delayed detached eddy simulation[J]. Renewable Energy, 2019, 141: 559-569.
doi: 10.1016/j.renene.2019.04.038 URL |
[22] |
LEI H, ZHOU D, BAO Y, et al. Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine[J]. Energy Conversion and Management, 2017, 133: 235-248.
doi: 10.1016/j.enconman.2016.11.067 URL |
[23] |
ARMSTRONG S, FIEDLER A, TULLIS S. Flow separation on a high Reynolds number, high solidity vertical axis wind turbine with straight and canted blades and canted blades with fences[J]. Renewable Energy, 2012, 41: 13-22.
doi: 10.1016/j.renene.2011.09.002 URL |
[24] |
ROH S C, KANG S H. Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine[J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3299-3307.
doi: 10.1007/s12206-013-0852-x URL |
[25] |
CHENG Z S, MADSEN H A, GAO Z, et al. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method[J]. Energy Procedia, 2016, 94: 531-543.
doi: 10.1016/j.egypro.2016.09.232 URL |
[26] |
SAGHARICHI A, MAGHREBI M J, ARABGOLARCHEH A. Variable pitch blades: An approach for improving performance of Darrieus wind turbine[J]. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053305.
doi: 10.1063/1.4964310 URL |
[1] | 周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. |
[2] | 刘忠波, 韩青亮, 任双双, 王彦, 房克照. 双层Boussinesq水波方程速度公式的修正[J]. 上海交通大学学报, 2023, 57(2): 177-182. |
[3] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
[4] | 王肇喜, 翟师慧, 赵凡, 王者蓝, 谢夏阳. 基于虚拟激励法的多激励振动试验数值分析[J]. 空天防御, 2023, 6(2): 69-76. |
[5] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
[6] | 操太春, 吴刚, 孔祥逸, 于东玮, 吴琳, 张大勇. 极地海洋工程装备圆管结构的对流换热影响[J]. 上海交通大学学报, 2023, 57(1): 17-23. |
[7] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[8] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[9] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[10] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[11] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[12] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[13] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
[14] | 郑高媛, 赵亦希, 崔峻辉. 车身用铝饰条拉弯成形面畸变缺陷形成规律[J]. 上海交通大学学报, 2022, 56(1): 53-61. |
[15] | 金戈, 范珉, 周振栋, 谭勇, 钟小波. 升降式止回阀动态特性分析与改进[J]. 上海交通大学学报, 2021, 55(S2): 110-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||