上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (5): 582-592.doi: 10.16183/j.cnki.jsjtu.2022.236
所属专题: 《上海交通大学学报》2023年“生物医学工程”专题
收稿日期:
2022-06-21
修回日期:
2022-07-26
接受日期:
2022-09-08
出版日期:
2023-05-28
发布日期:
2023-06-02
作者简介:
段继忠(1984-),副教授,现主要从事图像处理、深度学习和基于GPU的并行计算等研究;E-mail:基金资助:
Received:
2022-06-21
Revised:
2022-07-26
Accepted:
2022-09-08
Online:
2023-05-28
Published:
2023-06-02
摘要:
为提高并行磁共振成像的重建速度,基于平移不变离散小波变换(SIDWT)和迭代自一致性并行成像重建(SPIRiT)模型,提出一种高效的重建方法fSIDWT-SPIRiT.该方法针对含有数据一致项、校正一致项和L1范数正则项的复杂优化问题,首先将数据一致项和校正一致项进行合并处理,之后利用快速投影迭代软阈值算法进行求解以实现快速并行磁共振成像重建.最后,在不同人体器官的数据集上进行测试.仿真实验结果表明:与其他方法相比,该方法能够在保证图像重建质量的同时,具有更快的收敛速度.
中图分类号:
段继忠, 钱青青. 基于SIDWT和迭代自一致性的快速并行成像重建方法[J]. 上海交通大学学报, 2023, 57(5): 582-592.
DUAN Jizhong, QIAN Qingqing. Fast Parallel Imaging Reconstruction Method Based on SIDWT and Iterative Self-Consistency[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 582-592.
表1
在3~7倍加速时不同方法对数据集1进行重建的数值比较
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 29.15 | 27.82 | 26.86 | 25.90 | 25.39 |
VSSIM | 0.9879 | 0.9843 | 0.9811 | 0.9775 | 0.9755 | |
VHFEN | 0.0574 | 0.0685 | 0.0788 | 0.0911 | 0.0980 | |
SIDWT-SPIRiT | VSNR | 29.93 | 28.23 | 27.02 | 25.95 | 25.38 |
VSSIM | 0.9902 | 0.9868 | 0.9840 | 0.9815 | 0.9800 | |
VHFEN | 0.0544 | 0.0668 | 0.0791 | 0.0913 | 0.0986 | |
fSIDWT-SPIRiT | VSNR | 29.98 | 28.29 | 27.10 | 26.00 | 25.43 |
VSSIM | 0.9901 | 0.9870 | 0.9842 | 0.9818 | 0.9804 | |
VHFEN | 0.0531 | 0.0658 | 0.0778 | 0.0908 | 0.0984 |
表2
在3~7倍加速时不同方法对数据集2进行重建的数值比较
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 27.74 | 26.26 | 25.34 | 24.45 | 23.79 |
VSSIM | 0.9799 | 0.9735 | 0.9683 | 0.9635 | 0.9590 | |
VHFEN | 0.0721 | 0.0887 | 0.1035 | 0.1177 | 0.1321 | |
SIDWT-SPIRiT | VSNR | 27.85 | 26.22 | 25.27 | 24.39 | 23.73 |
VSSIM | 0.9879 | 0.9847 | 0.9826 | 0.9815 | 0.9799 | |
VHFEN | 0.0722 | 0.0900 | 0.1051 | 0.1192 | 0.1332 | |
fSIDWT-SPIRiT | VSNR | 27.87 | 26.26 | 25.32 | 24.44 | 23.77 |
VSSIM | 0.9881 | 0.9850 | 0.9829 | 0.9817 | 0.9805 | |
VHFEN | 0.0720 | 0.0893 | 0.1043 | 0.1184 | 0.1334 |
表3
在3~7倍加速时不同方法对数据集3进行重建的数值比较
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 22.87 | 21.78 | 20.94 | 20.03 | 19.11 |
VSSIM | 0.9521 | 0.9411 | 0.9309 | 0.9199 | 0.9082 | |
VHFEN | 0.0644 | 0.0777 | 0.0901 | 0.1070 | 0.1253 | |
SIDWT-SPIRiT | VSNR | 23.87 | 22.36 | 21.35 | 20.34 | 19.31 |
VSSIM | 0.9517 | 0.9382 | 0.9288 | 0.9204 | 0.9073 | |
VHFEN | 0.0617 | 0.0772 | 0.0907 | 0.1076 | 0.1260 | |
fSIDWT-SPIRiT | VSNR | 23.83 | 22.34 | 21.33 | 20.34 | 19.31 |
VSSIM | 0.9507 | 0.9381 | 0.9278 | 0.9196 | 0.9079 | |
VHFEN | 0.0611 | 0.0767 | 0.0902 | 0.1064 | 0.1259 |
表4
在3~7倍加速时不同方法对数据集4进行重建的数值比较
算法 | 指标 | R=3 | R=4 | R=5 | R=6 | R=7 |
---|---|---|---|---|---|---|
pFISTA-SPIRiT | VSNR | 21.10 | 19.76 | 18.93 | 18.29 | 17.66 |
VSSIM | 0.9414 | 0.9224 | 0.9100 | 0.8963 | 0.8851 | |
VHFEN | 0.1951 | 0.2465 | 0.2801 | 0.3117 | 0.3480 | |
SIDWT-SPIRiT | VSNR | 21.32 | 19.81 | 18.92 | 18.20 | 17.55 |
VSSIM | 0.9615 | 0.9507 | 0.9434 | 0.9369 | 0.9314 | |
VHFEN | 0.1988 | 0.2538 | 0.2878 | 0.3230 | 0.3591 | |
fSIDWT-SPIRiT | VSNR | 21.22 | 19.77 | 18.89 | 18.19 | 17.55 |
VSSIM | 0.9609 | 0.9502 | 0.9432 | 0.9366 | 0.9315 | |
VHFEN | 0.2011 | 0.2531 | 0.2883 | 0.3219 | 0.3591 |
表5
在3~7倍加速时不同方法对4个数据集进行重建的时间比较
数据集 | 算法 | R=3 | R=4 | R=5 | R=6 | R=7 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | m | t | m | t | m | t | m | t | m | ||||||
数据集1 | pFISTA-SPIRiT | 89 | 3.3 | 116 | 3.2 | 194 | 3.3 | 240 | 3.2 | 268 | 3.2 | ||||
SIDWT-SPIRiT | 91 | 3.4 | 121 | 3.4 | 203 | 3.4 | 259 | 3.5 | 303 | 3.6 | |||||
fSIDWT-SPIRiT | 27 | 1.0 | 36 | 1.0 | 59 | 1.0 | 74 | 1.0 | 85 | 1.0 | |||||
数据集2 | pFISTA-SPIRiT | 148 | 4.4 | 216 | 3.8 | 281 | 3.3 | 347 | 3.4 | 426 | 3.6 | ||||
SIDWT-SPIRiT | 128 | 3.8 | 198 | 3.5 | 274 | 3.3 | 313 | 3.1 | 390 | 3.3 | |||||
fSIDWT-SPIRiT | 34 | 1.0 | 57 | 1.0 | 84 | 1.0 | 101 | 1.0 | 120 | 1.0 | |||||
数据集3 | pFISTA-SPIRiT | 133 | 4.0 | 180 | 4.1 | 206 | 3.7 | 247 | 3.6 | 319 | 3.4 | ||||
SIDWT-SPIRiT | 150 | 4.5 | 232 | 5.3 | 293 | 5.3 | 316 | 4.6 | 446 | 4.8 | |||||
fSIDWT-SPIRiT | 33 | 1.0 | 44 | 1.0 | 55 | 1.0 | 68 | 1.0 | 93 | 1.0 | |||||
数据集4 | pFISTA-SPIRiT | 237 | 3.9 | 294 | 3.5 | 358 | 3.3 | 431 | 3.3 | 506 | 3.2 | ||||
SIDWT-SPIRiT | 259 | 4.2 | 343 | 4.0 | 431 | 4.0 | 515 | 3.9 | 625 | 3.9 | |||||
fSIDWT-SPIRiT | 61 | 1.0 | 85 | 1.0 | 107 | 1.0 | 131 | 1.0 | 159 | 1.0 |
[1] |
BROOKES M J, VRBA J, MULLINGER K J, et al. Source localisation in concurrent EEG/fMRI: Applications at 7T[J]. NeuroImage, 2009, 45(2): 440-452.
doi: 10.1016/j.neuroimage.2008.10.047 pmid: 19049883 |
[2] | 吴振洲, 常严, 徐雅洁, 等. 非笛卡尔并行磁共振成像重建技术研究新进展[J]. 仪器仪表学报, 2017, 38(8): 1996-2006. |
WU Zhenzhou, CHANG Yan, XU Yajie, et al. New research advances in non-Cartesian parallel MRI reconstruction[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1996-2006. | |
[3] | HAMILTON J, FRANSON D, SEIBERLICH N. Recent advances in parallel imaging for MRI[J]. Progress in Nuclera Magnetic Resonance Spectroscopy, 2017, 101: 71-95. |
[4] |
PRUESSMANN K P. Encoding and reconstruction in parallel MRI[J]. NMR in Biomedicine, 2006, 19(3): 288-299.
pmid: 16705635 |
[5] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
doi: 10.1109/TIT.2006.871582 URL |
[6] |
ISLAM S R, MAITY S P, RAY A K. Compressed sensing regularized calibrationless parallel magnetic resonance imaging via deep learning[J]. Biomedical Signal Processing and Control, 2021, 66: 102399.
doi: 10.1016/j.bspc.2020.102399 URL |
[7] |
LUSTIG M, PAULY J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-Space[J]. Magnetic Resonance in Medicine, 2010, 64(2): 457-471.
doi: 10.1002/mrm.22428 pmid: 20665790 |
[8] | VASANAWALA S, MURPHY M, ALLEY M, et al. Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients[C]//2011 IEEE International Symposium on Biomedical Imaging:From Nano to Macro. Chicago, USA: IEEE, 2011: 1039-1043. |
[9] | 段继忠, 张立毅, 刘昱, 等. 基于自一致性的磁共振并行成像高效重构算法[J]. 天津大学学报(自然科学与工程技术版). 2014, 47(5): 414-419. |
DUAN Jizhong, ZHANG Liyi, LIU Yu, et al. Efficient reconstruction algorithm for parallel magnetic resonance imaging based on self-consistency[J]. Journal of Tianjin University (Science and Technology), 2014, 47(5): 414-419. | |
[10] | PENG Z X, XU Z, HUANG J Z. RSPIRIT: Robust self-consistent parallel imaging reconstruction based on generalized Lasso[C]//2016 IEEE 13th International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE, 2016: 318-321. |
[11] |
TING S T, AHMAD R, JIN N, et al. Fast Implementation for compressive recovery of highly accelerated cardiac cine MRI using the balanced sparse model[J]. Magnetic Resonance in Medicine, 2017, 77(4): 1505-1515.
doi: 10.1002/mrm.26224 pmid: 27059406 |
[12] |
DUAN J Z, LIU Y, JING P G. Efficient operator splitting algorithm for joint sparsity-regularized SPIRiT-based parallel MR imaging reconstruction[J]. Magnetic Resonance Imaging, 2018, 46: 81-89.
doi: S0730-725X(17)30236-9 pmid: 29128678 |
[13] | GUO H Y, LIU P, WANG M, et al. TV-RSPIRiT: Total variation regularized based robust self-consistent parallel imaging reconstruction[C]//2019 International Conference on Medical Imaging Physics and Engineering. Shenzhen, China: IEEE, 2019: 1-4. |
[14] |
ZHANG X L, GUO D, HUANG Y M, et al. Image reconstruction with low-rankness and self-consistency of k-space data in parallel MRI[J]. Medical Image Analysis, 2020, 63: 101687.
doi: 10.1016/j.media.2020.101687 URL |
[15] |
ZHANG X L, LU H F, GUO D, et al. A guaranteed convergence analysis for the projected fast iterative soft-thresholding algorithm in parallel MRI[J]. Medical Image Analysis, 2021, 69: 101987.
doi: 10.1016/j.media.2021.101987 URL |
[16] | 薛方, 许朝萍, 刘耀飞, 等. 基于K空间采样的MRI重建算法研究[J]. 中国医学装备, 2021, 18(8): 1-4. |
XUE Fang, XU Chaoping, LIU Yaofei, et al. Research on MRI reconstruction algorithm based on K-space sampling[J]. China Medical Equipment, 2021, 18(8): 1-4. | |
[17] |
PAN T, DUAN J Z, WANG J F, et al. Iterative self-consistent parallel magnetic resonance imaging reconstruction based on nonlocal low-rank regularization[J]. Magnetic Resonance Imaging, 2022, 88: 62-75.
doi: 10.1016/j.mri.2022.01.012 pmid: 35114354 |
[18] |
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
doi: 10.1137/080716542 URL |
[19] |
LIU Y S, ZHAN Z F, CAI J F, et al. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2016, 35(9): 2130-2140.
doi: 10.1109/TMI.2016.2550080 pmid: 27071164 |
[20] |
HU Y H, ZHANG X L, CHEN D C, et al. Spatiotemporal flexible sparse reconstruction for rapid dynamic contrast-enhanced MRI[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 229-243.
doi: 10.1109/TBME.2021.3091881 URL |
[21] |
SCHMIDT J F M, SANTELLI C, KOZERKE S. MR image reconstruction using block matching and adaptive kernel methods[J]. PLoS One, 2016, 11(4): e0153736.
doi: 10.1371/journal.pone.0153736 URL |
[22] |
YING L, SHENG J H. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)[J]. Magnetic Resonance in Medicine, 2007, 57(6): 1196-1202.
pmid: 17534910 |
[23] |
KNOLL F, ZBONTAR J, SRIRAM A, et al. fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning[J]. Radiology Artificial Intelligence, 2020, 2(1): e190007.
doi: 10.1148/ryai.2020190007 URL |
[24] | ZBONTAR J, KNOLL F, SRIRAM A, et al. fastMRI: An open dataset and benchmarks for accelerated MRI[EB/OL]. (2019-12-11) [2022-06-17]. https://arxiv.org/abs/1811.08839. |
[1] | 刘诚,王德忠,戚屯锋,李守平,王川,张稳. 核废物桶放射性探测的层析γ扫描技术 [J]. 上海交通大学学报(自然版), 2010, 44(09): 1287-1291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||