上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (3): 316-325.doi: 10.16183/j.cnki.jsjtu.2021.346
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
万安平1, 杨洁1,2, 缪徐1, 陈挺1(), 左强1, 李客2,3
收稿日期:
2021-09-08
接受日期:
2021-11-10
出版日期:
2023-03-28
发布日期:
2023-03-30
通讯作者:
陈 挺(1989-),博士研究生,博士后;E-mail:作者简介:
万安平(1983-),博士后,副教授,主要从事热电联产机组负荷预测与运行优化研究.
基金资助:
WAN Anping1, YANG Jie1,2, MIAO Xu1, CHEN Ting1(), ZUO Qiang1, LI Ke2,3
Received:
2021-09-08
Accepted:
2021-11-10
Online:
2023-03-28
Published:
2023-03-30
摘要:
热电联产机组的锅炉负荷准确预测对电厂生产管理及调度有直接作用.基于注意力机制和深度卷积-长短期记忆网络原理,提出一种新的热电联产长期负荷预测模型,该模型以锅炉出口蒸汽流量(负荷)历史数据和多维负荷影响因素为输入,对负荷进行长期预测.利用Pearson相关系数判定对原始数据进行筛选;将处理后的数据经卷积层进行特征提取和进一步降维,通过长短期记忆层进行拟合,并采取注意力机制对权值进行优化,实现对负荷的精准预测.以浙江桐乡电厂实测数据为例进行验证,结果表明所提方法的平均绝对百分比误差小于1%,能够实现锅炉负荷的精准预测,智能算法在热电联产领域的应用具有一定的借鉴意义.
中图分类号:
万安平, 杨洁, 缪徐, 陈挺, 左强, 李客. 基于注意力机制与神经网络的热电联产锅炉负荷预测[J]. 上海交通大学学报, 2023, 57(3): 316-325.
WAN Anping, YANG Jie, MIAO Xu, CHEN Ting, ZUO Qiang, LI Ke. Boiler Load Forecasting of CHP Plant Based on Attention Mechanism and Deep Neural Network[J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 316-325.
[1] | 陈向国. 智慧供热引领供热行业发展新方向[J]. 节能与环保, 2021(3): 22-25. |
CHEN Xiangguo. Smart heating leads the new development direction of heating industry[J]. Energy Conservation & Environmental Protection, 2021 (3): 22-25. | |
[2] | 陈新和, 裴玮, 邓卫, 等. 数据驱动的虚拟电厂调度特性封装方法[J]. 中国电机工程学报, 2021, 41(14): 4816-4828. |
CHEN Xinhe, PEI Wei, DENG Wei, et al. Data-driven virtual power plant dispatching characteristic packing method[J]. Proceedings of the CSEE, 2021, 41(14): 4816-4828. | |
[3] | 许可. 母管制热电机组热力系统建模与负荷优化分配[D]. 杭州: 浙江大学, 2020. |
XU Ke. Thermal system modeling of main-pipeline cogeneration unit and combined heat and power optimized distribution[D]. Hangzhou: Zhejiang University, 2020. | |
[4] | DUDZIK W, NALEPA J, KAWULOK M. Evolving data-adaptive support vector machines for binary classification[J]. Knowledge-Based Systems, 2021, 227: 107221. |
[5] | YANG J, ZHANG T Z, HONG J C, et al. Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle[J]. Energy, 2021, 233: 121221. |
[6] | IMANI M. Electrical load-temperature CNN for residential load forecasting[J]. Energy, 2021, 227: 120480. |
[7] |
KUMAR D, MATHUR H D, BHANOT S, et al. Forecasting of solar and wind power using LSTM RNN for load frequency control in isolated microgrid[J]. International Journal of Modelling and Simulation, 2021, 41(4): 311-323.
doi: 10.1080/02286203.2020.1767840 URL |
[8] |
REZAEE M J, DADKHAH M, FALAHINIA M. Integrating neuro-fuzzy system and evolutionary optimization algorithms for short-term power generation forecasting[J]. International Journal of Energy Sector Management, 2019, 13(4): 828-845.
doi: 10.1108/IJESM-09-2018-0015 URL |
[9] | KARABIBER A, ALÇIN Ö F. Short term PV power estimation by means of extreme learning machine and support vector machine[C]// 2019 7th International Istanbul Smart Grids and Cities Congress and Fair. Istanbul, Turkey: IEEE, 2019: 41-44. |
[10] | TAN Z F, DE G, LI M L, et al. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine[J]. Journal of Cleaner Production, 2020, 248: 119252. |
[11] | ZYMEŁKA P, SZEGA M. Short-term scheduling of gas-fired CHP plant with thermal storage using optimization algorithm and forecasting models[J]. Energy Conversion and Management, 2021, 231: 113860. |
[12] | 刘亚珲, 赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4444-4451. |
LIU Yahui, ZHAO Qian. Ultra-short-term power load forecasting based on cluster empirical mode decomposition of CNN-LSTM[J]. Power System Technology, 2021, 45(11): 4444-4451. | |
[13] | 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137. |
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. | |
[14] |
OKAMURA H, OSADA Y, NISHIJIMA S, et al. Novel robust time series analysis for long-term and short-term prediction[J]. Scientific Reports, 2021, 11: 11938.
doi: 10.1038/s41598-021-91327-8 pmid: 34099758 |
[15] | FENG G L, ZHANG L Y, YANG J H, et al. Long-term prediction of time series using fuzzy cognitive maps[J]. Engineering Applications of Artificial Intelligence, 2021, 102: 104274. |
[16] | ZHANG G, BAI X Q, WANG Y X. Short-time multi-energy load forecasting method based on CNN-Seq2Seq model with attention mechanism[J]. Machine Learning With Applications, 2021, 5: 100064. |
[17] | JIN Y L, TAN E L, LI L, et al. Hybrid traffic forecasting model with fusion of multiple spatial toll collection data and remote microwave sensor data[J]. IEEE Access, 2018(6): 79211-79221. |
[18] |
YANG Y R, XIONG Q Y, WU C, et al. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism[J]. Environmental Science and Pollution Research International, 2021, 28(39): 55129-55139.
doi: 10.1007/s11356-021-14687-8 pmid: 34129164 |
[19] |
BOMMISETTY R M, PRAKASH O, KHARE A. Keyframe extraction using Pearson correlation coefficient and color moments[J]. Multimedia Systems, 2020, 26(3): 267-299.
doi: 10.1007/s00530-019-00642-8 |
[20] | CHEN Q, ZHANG W Y, ZHU K, et al. A novel trilinear deep residual network with self-adaptive Dropout method for short-term load forecasting[J]. Expert Systems With Applications, 2021, 182: 115272. |
[21] |
张珂, 杨歆豪, 张嘉慧, 等. 基于高次指数平滑动态边界限制的深度学习优化算法[J]. 信息与控制, 2021, 50(6): 685-693.
doi: 10.13976/j.cnki.xk.2021.0522 |
ZHANG Ke, YANG Xinhao, ZHANG Jiahui, et al. Deep learning optimization algorithm based on high order exponential smoothing dynamic boundary constraint[J]. Information and Control, 2021, 50(6): 685-693.
doi: 10.13976/j.cnki.xk.2021.0522 |
[1] | 米阳, 吴继伟, 田书欣, 马思源, 王育飞. 考虑个体自私的热电联产系统完全分布式经济调度[J]. 上海交通大学学报, 2024, 58(1): 50-58. |
[2] | 卫慧, 陈鹏, 张芮菡, 程正顺. 基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法[J]. 上海交通大学学报, 2023, 57(S1): 37-45. |
[3] | 詹可, 朱仁传. 一种CNN-LSTM船舶运动极值预报模型[J]. 上海交通大学学报, 2023, 57(8): 963-971. |
[4] | 尚凡成, 李传庆, 詹可, 朱仁传. 改进LSTM神经网络在极短期波浪时序预报中的应用[J]. 上海交通大学学报, 2023, 57(6): 659-665. |
[5] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[6] | 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623. |
[7] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
[8] | 李擎, 皇甫玉彬, 李江昀, 杨志方, 陈鹏, 王子涵. UConvTrans:全局和局部信息交互的双分支心脏图像分割[J]. 上海交通大学学报, 2023, 57(5): 570-581. |
[9] | 李琰, 肖龙飞, 魏汉迪, 寇雨丰. 基于长短期记忆网络的半潜平台波浪爬升预报[J]. 上海交通大学学报, 2023, 57(2): 161-167. |
[10] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[11] | . 基于充电态势感知的充电站负荷预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 28-38. |
[12] | . 行人轨迹预测的动作感知编码器–解码器网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[13] | 王者蓝, 赵宏杰, 赵凡, 沈晨晨, 吴佳伟. 基于卷积神经网络与滤波融合算法的某惯导系统剩余寿命预测模型建立[J]. 空天防御, 2023, 6(1): 70-77. |
[14] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[15] | 全大英, 陈赟, 唐泽雨, 李世通, 汪晓锋, 金小萍. 基于双通道卷积神经网络的雷达信号识别[J]. 上海交通大学学报, 2022, 56(7): 877-885. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||