上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (12): 1597-1608.doi: 10.16183/j.cnki.jsjtu.2022.403
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
收稿日期:
2022-10-14
修回日期:
2022-12-21
接受日期:
2023-02-21
出版日期:
2023-12-28
发布日期:
2023-12-29
作者简介:
陶海军(1980-),副教授,从事大功率开关电源及其控制的研究;E-mail:基金资助:
TAO Haijun1,2(), DU Changshun3, ZHANG Jinsheng1, ZHENG Zheng1,2
Received:
2022-10-14
Revised:
2022-12-21
Accepted:
2023-02-21
Online:
2023-12-28
Published:
2023-12-29
摘要:
电磁探测法是海洋油气资源勘探的主要方法,而海洋电磁发射机是海洋电磁探测系统的关键设备.目前海洋电磁发射机水下拖体长时间工作时,会出现开关器件损坏现象.首先分析了采用单向可控源电路的发射桥换流过程,发现发射偶极寄生电感回馈能量使二级母线产生冲击电压,增大了开关管的电压应力.然后分析了双向可控源电路的工作模式,提出一种双变量解耦控制策略,在变压器前后两级建立的模型基础上,将原来的耦合非线性系统全局线性化为两个单输入单输出系统,以此获得滑模控制器的函数关系.仿真与实验结果表明,所设计的可控源电路可以明显减小母线电容的冲击电压和开关管的电压应力,提高系统的动态性能和效率.
中图分类号:
陶海军, 杜长顺, 张金生, 郑征. 海洋电磁发射机二级母线冲击电压产生机理及抑制[J]. 上海交通大学学报, 2023, 57(12): 1597-1608.
TAO Haijun, DU Changshun, ZHANG Jinsheng, ZHENG Zheng. Generating Mechanism and Suppression of Impulse Voltage on Secondary Bus of Marine Electromagnetic Transmitter[J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1597-1608.
[1] |
底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6): 2128-2138.
doi: 10.6038/cjg2019M0633 |
DI Qingyun, ZHU Rixiang, XUE Guoqiang, et al. New development of the electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6): 2128-2138. | |
[2] |
SCHWALENBERG K, RIPPE D, KOCH S, et al. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand[J]. Journal of Geophysical Research Solid Earth, 2017, 122(5): 3334-3350.
doi: 10.1002/jgrb.v122.5 URL |
[3] | CONSTABLE S. Perspectives on marine electromagnetic methods[J]. Perspectives of Earth and Space Scientists, 2020, 1(1): e2019CN000123. |
[4] | 底青云, 薛国强, 殷长春, 等. 中国人工源电磁探测新方法[J]. 中国科学: 地球科学, 2020, 50(9): 1219-1227. |
DI Qingyun, XUE Guoqiang, YIN Changchun, et al. New method of artificial source electromagnetic detection in China[J]. Science China: Earth Sciences, 2020, 50(9): 1219-1227. | |
[5] | SONG H, ZHANG Y, GAO J, et al. Clamping-diode circuit for marine controlled-source electromagnetic transmitters[J]. Journal of Power Electronics, 2018, 18(2): 395-406. |
[6] | 丁建智, 张一鸣, 张加林, 等. 海洋可控源电磁发射机建模与控制方法[J]. 北京工业大学学报, 2018, 44(8): 1090-1098. |
DING Jianzhi, ZHANG Yiming, ZHANG Jialin, et al. Modeling and a control method of marine controlled source electromagnetic transmitter[J]. Journal of University of Science and Technology, 2018, 44(8): 1090-1098. | |
[7] | 真齐辉, 底青云, 刘汉北. 励磁控制的CSAMT发送机若干技术研究[J]. 地球物理学报, 2013, 56(11): 3751-3760. |
ZHEN Qihui, DI Qingyun, LIU Hanbei. Key technology study on CSAMT transmitter with excitation control[J]. Chinese Journal of Geophysics, 2013, 56(11): 3751-3760. | |
[8] | 余飞. 高压大功率电磁发射机供电关键技术的研究[D]. 北京: 北京工业大学, 2013. |
YU Fei. Research on the key technologies of power supply for high-voltage and high-power electromagnetic transmitter[D]. Beijing: Beijing University of Technology, 2013. | |
[9] | 王旭红, 张一鸣, 刘蔚. 多道瞬变电磁法发射机供电关键技术研究[J]. 上海交通大学学报, 2019, 53(3): 355-365. |
WANG Xuhong, ZHANG Yiming, LIU Wei. Key technology study of power supply for multi-transient electromagnetic method transmitter[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 355-365. | |
[10] | 林君, 杨宇, 胡雪岩, 等. 基于感性负载的瞬变电磁发射波形控制技术[J]. 吉林大学学报(工学版), 2016, 46(5): 1718-1724. |
LIN Jun, YANG Yu, HU Xueyan, et al. Transmitting waveform control technology for transient electromagnetic method based on inductive load[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5): 1718-1724. | |
[11] | 付志红, 周雒维, 苏向丰, 等. 两种新颖的准谐振型电流陡脉冲整形电路[J]. 中国电机工程学报, 2006(5): 70-75. |
FU Zhihong, ZHOU Luowei, SU Xiangfeng, et al. Two novel quasi-resonant steep current impulse rectifying circuits[J]. Chinese Journal of Electrical Engineering, 2006(5): 70-75. | |
[12] |
CONSTABLE S, SRNKA L J. Marine controlled-source electromagnetic methods — An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration[J]. Geophysics, 2007, 72(2): WA3-WA12.
doi: 10.1190/1.2432483 URL |
[13] | HOU N, SONG W, WU M. Minimum-current-stress scheme of dual active bridge DC-DC converter with unified phase-shift control[J]. IEEE Transactions on Power, 2016, 31(12): 8552-8561. |
[14] | 侯聂, 宋文胜, 王顺亮. 全桥隔离DC/DC变换器相移控制归一化及其最小回流功率控制[J]. 中国电机工程学报, 2016, 36(2): 499-506. |
HOU Nie, SONG Wensheng, WANG Shunliang. Normalization of phase shift control and minimum reflux power control of full-bridge isolated DC/DC converters[J]. Chinese Journal of Electrical Engineering, 2016, 36(2): 499-506. | |
[15] |
GUO Z. Modulation scheme of dual active bridge converter for seamless transitions in multiworking modes compromising ZVS and conduction loss[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7399-7409.
doi: 10.1109/TIE.41 URL |
[16] | TAO H, ZHANG Y, REN X. Small-signal modeling of marine electromagnetic detection transmitter controlled-source circuit[J]. Mathematical Problems in Engineering, 2015(1): 1-9. |
[17] | 陶海军, 张一鸣, 任喜国. 大功率海洋电磁发射机DC-DC可控源电路特性分析[J]. 电工技术学报, 2017, 32(16): 233-244. |
TAO Haijun, ZHANG Yiming, REN Xiguo. Characteristics analysis of high power marine electromagnetic transmitter DC-DC controlled source circuit[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 233-244. | |
[18] | EVERTS J. Closed-form solution for efficient ZVS modulation of DAB converters[J]. IEEE Transactions on Power, 2017, 32(10): 7561-7576. |
[19] |
TAO H, DU C, ZHANG G, et al. Dual-mode control strategy based on DC-bus voltage for dual-active bridge converter in marine electromagnetic transmitter system[J]. Journal of Power Electronics, 2022, 22(2): 351-362.
doi: 10.1007/s43236-021-00337-2 |
[1] | 万慧, 齐晓慧, 李杰. 基于线性矩阵不等式的线性/非线性切换自抗扰控制系统的稳定性分析[J]. 上海交通大学学报, 2022, 56(11): 1491-1501. |
[2] | 侯珏, 姚栋伟, 吴锋, 吕成磊, 王涵, 沈俊昊. 混合励磁电机的电动汽车增程器控制策略[J]. 上海交通大学学报, 2021, 55(2): 206-212. |
[3] | 王旭红,张一鸣,刘蔚. 多道瞬变电磁法发射机供电关键技术研究[J]. 上海交通大学学报(自然版), 2019, 53(3): 355-365. |
[4] | 姜晓明, 王旭烽, 张伟芳, 刘宜罡. 激光跟瞄系统粗精复合轴协同控制策略优化研究[J]. 空天防御, 2019, 2(3): 31-37. |
[5] | 张加林,张一鸣,丁建智,高俊侠. 基于全控整流技术的电磁发射机[J]. 上海交通大学学报(自然版), 2018, 52(9): 1023-1030. |
[6] | 麦雪凤. 智能解耦控制在过程控制实验装置上的设计与实现[J]. 实验室研究与探索, 2017, 36(5): 139-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||