上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (6): 746-753.doi: 10.16183/j.cnki.jsjtu.2021.062
收稿日期:
2021-02-23
出版日期:
2022-06-28
发布日期:
2022-07-04
作者简介:
汪金辉(1981-),男,安徽省桐城市人,副教授,博士生导师,从事工程领域的火灾安全与设计研究. 电话(Tel.):021-38282528;E-mail: 基金资助:
WANG Jinhui(), HUANG Yijun, CUI Xin, ZHANG Shaogang, ZHANG Ruiqing
Received:
2021-02-23
Online:
2022-06-28
Published:
2022-07-04
摘要:
火灾烟气传输延滞行为是火灾早期烟气传输过程中的重要特性之一,直接影响到火灾探测器动作响应时间.为了研究狭长空间中火灾烟气传输延滞行为与准稳态之间的定量关系,根据弱羽流理论和狭长空间火羽流研究现有成果,从理论上提出了火灾烟气传输延滞时间计算的时间链表法,依据准稳态假设成立的判别条件,建立了狭长空间非稳态火准稳态假设成立的临界时间模型,并给出了临界时间计算方法.案例分析表明: 在相同工况条件下,狭长空间中顶棚给定纵向距离处烟气传输达到准稳态的临界时间比在开放空间中的长.而对于开放空间羽流,由于贴顶棚羽流较薄,卷吸空气量较小,保持了相对较高的流速,导致相同工况条件下狭长空间中的烟气传输延滞时间比开放空间中的更长.
中图分类号:
汪金辉, 黄意钧, 崔欣, 张少刚, 张睿卿. 狭长空间火灾烟气传输的准稳态时间模型[J]. 上海交通大学学报, 2022, 56(6): 746-753.
WANG Jinhui, HUANG Yijun, CUI Xin, ZHANG Shaogang, ZHANG Ruiqing. Quasi-Steady State Time Model of Fire Smoke Transmission in Long-Narrow Spaces[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 746-753.
表1
非稳态火源烟气延滞时间计算的时间链表法
计算量 | t1 | … | ti | … | tn |
---|---|---|---|---|---|
| | … | | … | |
ts( | ts( | … | ts( | … | ts( |
tu( | tu( | … | tu( | … | tu( |
tc( | tc( | … | tc( | … | tc( |
ta( | ta( | … | ta( | … | ta( |
tlag(ti)/s | t1+ta( | … | ti+ta( | … | tn+ta( |
表2
不同火灾场景下延滞时间计算
| H/m | r/m | lb/m | tlag/s |
---|---|---|---|---|
0.2 | 3.9 | 4.8 | 0.8 | 43.9 |
0.5 | 2.5 | 3.1 | 0.5 | 18.3 |
0.7 | 3.7 | 4.5 | 0.8 | 26.3 |
0.8 | 2.6 | 3.3 | 0.6 | 16.3 |
1.2 | 3.2 | 4 | 0.7 | 18.7 |
1.3 | 3.4 | 4.2 | 0.7 | 19.3 |
1.5 | 3.7 | 8.6 | 1.2 | 43.8 |
1.0 | 3.4 | 7.8 | 1.1 | 43.8 |
0.8 | 2.1 | 4.8 | 0.7 | 25.0 |
0.6 | 3.2 | 7.5 | 1.0 | 49.2 |
1.1 | 3.9 | 12.4 | 1.8 | 79.1 |
0.9 | 3.5 | 11.1 | 1.6 | 72.8 |
0.8 | 3.6 | 11.5 | 1.6 | 80.5 |
1.4 | 2.6 | 5.2 | 1.3 | 25.6 |
0.7 | 3.3 | 6.6 | 1.7 | 44.7 |
0.8 | 1.9 | 3.8 | 1.0 | 20.2 |
0.2 | 3.1 | 6.2 | 1.6 | 61.8 |
0.7 | 2.7 | 6.3 | 1.4 | 40.5 |
0.3 | 2.9 | 6.9 | 1.6 | 61.0 |
2.1 | 3.5 | 8.3 | 1.9 | 40.7 |
0.2 | 2.6 | 6.2 | 1.4 | 61.2 |
0.9 | 3.1 | 7.3 | 1.7 | 46.6 |
0.2 | 2.5 | 6.0 | 1.4 | 57.8 |
2.0 | 3.4 | 8.0 | 1.8 | 39.4 |
0.7 | 2.2 | 5.3 | 1.2 | 32.4 |
1.1 | 2.2 | 2.8 | 0.9 | 12.7 |
0.2 | 2.2 | 2.8 | 0.9 | 22.4 |
0.9 | 2.2 | 2.8 | 0.9 | 13.8 |
0.4 | 2.2 | 2.8 | 0.9 | 18.6 |
1.5 | 2.2 | 2.8 | 0.9 | 11.4 |
0.7 | 2.2 | 2.8 | 0.9 | 14.7 |
[1] |
HUANG D F, LI S C. An experimental investigation of stratification characteristic of fire smoke in the corridor under the effect of outdoor wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 173-183.
doi: 10.1016/j.jweia.2018.05.021 URL |
[2] | 张聪, 李思成. 室外风与机械排烟综合作用下走廊烟气分层特性研究[J]. 消防科学与技术, 2019, 38(10): 1406-1411. |
ZHANG Cong, LI Sicheng. Combined effects of outdoor wind and mechanical smoke exhaust on smoke thermal stratification in corridor[J]. Fire Science and Technology, 2019, 38(10): 1406-1411. | |
[3] |
TIAN X L, LIU C, ZHONG M H. Numerical and experimental study on the effects of a ceiling beam on the critical velocity of a tunnel fire based on virtual fire source[J]. International Journal of Thermal Sciences, 2021, 159: 106635.
doi: 10.1016/j.ijthermalsci.2020.106635 URL |
[4] | 汪金辉, 焦宇, 许乐平. 船舶感烟探测器探测时间与布置间距近似计算[J]. 中国安全科学学报, 2011, 21(11): 67-71. |
WANG Jinhui, JIAO Yu, XU Leping. An approximate calculation method for response time and arrangement space of ship smoke detectors[J]. China Safety Science Journal, 2011, 21(11): 67-71. | |
[5] |
DELICHATSIOS M A. The flow of fire gases under a beamed ceiling[J]. Combustion and Flame, 1981, 43: 1-10.
doi: 10.1016/0010-2180(81)90002-X URL |
[6] |
LIU C, ZHONG M H, TIAN X L, et al. Experimental and numerical study on fire-induced smoke temperature in connected area of metro tunnel under natural ventilation[J]. International Journal of Thermal Sciences, 2019, 138: 84-97.
doi: 10.1016/j.ijthermalsci.2018.12.037 URL |
[7] |
KOSLOWSKI C C, MOTEVALLI V. Effect of beams on ceiling jet behavior and heat detector operation[J]. Journal of Fire Protection Engineering, 1993, 5(3): 97-111.
doi: 10.1177/104239159300500302 URL |
[8] |
MOTEVALLI V, YUAN Z P. Steady state ceiling jet behavior under an unconfined ceiling with beams[J]. Fire Technology, 2008, 44(2): 97-112.
doi: 10.1007/s10694-007-0027-3 URL |
[9] |
OKA Y, OKA H. Velocity and temperature attenuation of a ceiling-jet along a horizontal tunnel with a flat ceiling and natural ventilation[J]. Tunnelling and Underground Space Technology, 2016, 56: 79-89.
doi: 10.1016/j.tust.2016.03.001 URL |
[10] | 汤静, 石必明, 陈昆. 典型结构走廊火灾烟气流场的数值模拟研究[J]. 中国安全生产科学技术, 2015, 11(10): 33-37. |
TANG Jing, SHI Biming, CHEN Kun. Numerical simulation of fire smoke flow in typical structure of building corridor[J]. Journal of Safety Science and Technology, 2015, 11(10): 33-37. | |
[11] | 纪杰, 霍然, 张英, 等. 长通道内烟气层水平蔓延阶段的质量卷吸速率实验研究[J]. 中国科学技术大学学报, 2009, 39(7): 738-742. |
JI Jie, HUO Ran, ZHANG Ying, et al. Experimental study on the entrainment mass flow rate across the smoke layer interface during horizontal spread in a long channel[J]. Journal of University of Science and Technology of China, 2009, 39(7): 738-742. | |
[12] |
DAHANAYAKE K C, YANG Y Z, WAN Y, et al. Study on the fire growth in underground green corridors[J]. Building Simulation, 2020, 13(3): 627-635.
doi: 10.1007/s12273-019-0595-4 URL |
[13] |
KRÓL A, KRÓL M, KOPER P, et al. Numerical modeling of air velocity distribution in a road tunnel with a longitudinal ventilation system[J]. Tunnelling and Underground Space Technology, 2019, 91: 103003.
doi: 10.1016/j.tust.2019.103003 URL |
[14] | 王浩波, 纪杰, 钟委, 等. 长通道内烟气一维水平蔓延阶段质量卷吸系数的实验研究[J]. 工程力学, 2009, 26(11): 247-251. |
WANG Haobo, JI Jie, ZHONG Wei, et al. Experimental study on air entrainment coefficient during one-dimensional horizontal movement of fire-induced smoke in long channels[J]. Engineering Mechanics, 2009, 26(11): 247-251. | |
[15] |
MOWRER F W. Lag times associated with fire detection and suppression[J]. Fire Technology, 1990, 26(3): 244-265.
doi: 10.1007/BF01040111 URL |
[16] |
HESKESTAD G, DELICHATSIOS M A. Update: The initial convective flow in fire[J]. Fire Safety Journal, 1989, 15(6): 471-475.
doi: 10.1016/0379-7112(89)90017-9 URL |
[17] | BEYLER C L. A design method for flaming fire detection[J]. Fire Technology, 1984, 20(4): 5-16. |
[18] |
STROUP D W, EVANS D D. Use of computer fire models for analyzing thermal detector spacing[J]. Fire Safety Journal, 1988, 14(1/2): 33-45.
doi: 10.1016/0379-7112(88)90043-4 URL |
[19] | ALPERT R L. Ceiling jet flows[M]∥SFPE handbook of fire protection engineering. New York, USA: Springer, 2016: 429-454. |
[20] | TANAKA T, FUJITA T, YAMAGUCHI J. Investigation into rise time of buoyant fire plume fronts[J]. International Journal of Engineering Performance-Based Fire Codes, 2000, 2(1): 14-25. |
[21] |
HESKESTAD G. Rise of plume front from starting fires[J]. Fire Safety Journal, 2001, 36(2): 201-204.
doi: 10.1016/S0379-7112(00)00061-8 URL |
[22] |
HU L H, LI Y Z, HUO R, et al. Experimental studies on the rise-time of buoyant fire plume fronts induced by pool fires[J]. Journal of Fire Sciences, 2004, 22(1): 69-86.
doi: 10.1177/0734904104039696 URL |
[23] | 程远平, 陈亮, 张孟君. 火灾过程中火源热释放速率模型及其实验测试方法[J]. 火灾科学, 2002, 11(2): 70-125. |
CHENG Yuanping, CHEN Liang, ZHANG Mengjun. The models and experimental testing method of heat release rate of fuel during the development of fire[J]. Fire Safety Science, 2002, 11(2): 70-125. | |
[24] | HESKESTAD G. Similarity relations for the initial convective flow generated by fire[R]. New York, USA: American Society of Mechanical Engineers, 1972. |
[25] | JOHN R. Smoke and heat extraction in large rooms[J]. VFDB-Zeitschrift Forschung, Technik and Management im Fire Protection, 1988, 38(1): 21-25. |
[26] |
WANG J H, LI G Q, SHI L, et al. Transport time lag effect on smoke flow characteristics in long-narrow spaces[J]. Fire Technology, 2017, 53(3): 983-1010.
doi: 10.1007/s10694-016-0614-2 URL |
[27] | BARENBLATT G I. Similarity, self-similarity, and intermediate asymptotics[M]. Boston, MA, USA: Springer, 1979. |
[1] | 崔霞1, 施光林2, 沈伟3. 基于分组数据处理神经网络气动人工肌肉迟滞特性[J]. 上海交通大学学报(自然版), 2012, 46(06): 931-935. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||