上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (6): 722-729.doi: 10.16183/j.cnki.jsjtu.2021.149
收稿日期:
2021-05-08
出版日期:
2022-06-28
发布日期:
2022-07-04
通讯作者:
陈锦剑
E-mail:chenjj29@sjtu.edu.cn
作者简介:
杨其润(1997-),男,山东省枣庄市人,硕士生,从事基坑工程方面的研究.
基金资助:
YANG Qirun1, LI Mingguang1, CHEN Jinjian1(), WU Hang2
Received:
2021-05-08
Online:
2022-06-28
Published:
2022-07-04
Contact:
CHEN Jinjian
E-mail:chenjj29@sjtu.edu.cn
摘要:
采用数值方法建立基于小硬变硬化(HSS)本构模型的相邻基坑模型,将其与单个基坑模型和不考虑墙土摩擦的相邻基坑模型进行对比分析,得到了同步实施的相邻基坑的受力变形特性,揭示相邻基坑相互作用机理.结果表明:坑间土体中存在两种土拱效应,一种是由墙体不均匀变形引起的土拱效应,另一种是由墙土摩擦引起的土拱效应,两者共同影响作用在围护墙上的土压力.随着基坑间距的减小,前者减弱,导致开挖面附近土体向被支撑土体的土压力转移减弱;后者增强,导致作用在相邻围护墙上的土压力减小.在两者的作用下,随着基坑间距的减小,作用在相邻墙体上的土压力先由R型分布向线性分布发展,再向R型分布发展,非相邻墙体水平位移最大值增大,相邻墙体水平位移最大值先增大后减小.
中图分类号:
杨其润, 李明广, 陈锦剑, 吴航. 同步实施的相邻基坑相互作用机理[J]. 上海交通大学学报, 2022, 56(6): 722-729.
YANG Qirun, LI Mingguang, CHEN Jinjian, WU Hang. Interaction Mechanisms of Synchronously Performed Adjacent Excavations[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 722-729.
表1
HSS模型参数
土层编号 | 厚度/m | Es/MPa | | | | | γ0.7×104 | c'/kPa | φ'/(°) | ψ/(°) | m | Rf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
① | 3.9 | 4.26 | 3.83 | 4.60 | 30.67 | 122.69 | 2.7 | 1 | 30 | 0 | 0.8 | 0.6 |
③ | 5.1 | 4.72 | 4.25 | 5.10 | 33.98 | 135.94 | 2.7 | 3 | 28 | 0 | 0.8 | 0.6 |
④ | 8.4 | 2.44 | 2.20 | 2.64 | 17.57 | 70.27 | 2.7 | 4 | 25 | 0 | 0.8 | 0.6 |
⑤2-1 | 8.2 | 10.22 | 9.20 | 11.04 | 55.19 | 220.75 | 2.7 | 5 | 30 | 0 | 0.8 | 0.9 |
⑤2-2 | 11.9 | 6.21 | 5.59 | 6.71 | 33.53 | 134.14 | 2.7 | 5 | 30 | 0 | 0.8 | 0.9 |
⑤2-3 | 8 | 9.31 | 8.38 | 10.06 | 50.27 | 201.10 | 2.7 | 5 | 30 | 0 | 0.8 | 0.9 |
⑤2-3t | 8.9 | 5.28 | 4.75 | 5.70 | 28.51 | 114.05 | 2.7 | 5 | 30 | 0 | 0.8 | 0.9 |
⑦ | 9.8 | 14.31 | 12.88 | 15.46 | 90.15 | 360.61 | 2.7 | 6 | 32 | 2 | 0.5 | 0.9 |
⑨ | 35.8 | 12.74 | 11.47 | 13.76 | 80.26 | 321.05 | 2.7 | 6 | 32 | 2 | 0.5 | 0.9 |
[1] | 岳树桥, 左人宇, 陆钊. 相邻基坑有限宽度土条主动土压力的计算[J]. 岩土力学, 2016, 37(7): 2063-2069. |
YUE Shuqiao, ZUO Renyu, LU Zhao. A method for calculating active earth pressure of soil piece with a finite width between adjacent foundation pits[J]. Rock and Soil Mechanics, 2016, 37(7): 2063-2069. | |
[2] | 陈小雨, 袁静, 胡敏云, 等. 相邻深大基坑安全距离理论分析与数值模拟[J]. 地下空间与工程学报, 2019, 15(5): 1557-1564. |
CHEN Xiaoyu, YUAN Jing, HU Minyun, et al. Theoretical analysis and numerical simulation of safe distance of adjacent deep foundation pits[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1557-1564. | |
[3] |
ZENG F Y, ZHANG Z J, WANG J H, et al. Observed performance of two adjacent and concurrently excavated deep foundation pits in soft clay[J]. Journal of Performance of Constructed Facilities, 2018, 32(4): 04018040.
doi: 10.1061/(ASCE)CF.1943-5509.0001184 URL |
[4] | 李成巍, 李伟, 梁志荣. 软土地区隧道两侧深基坑同步施工设计与分析[J]. 地下空间与工程学报, 2018, 14(Sup.1): 193-199. |
LI Chengwei, LI Wei, LIANG Zhirong. Design and analysis on synchronous construction of deep foundation pit on both sides of tunnels in soft soils[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(Sup.1): 193-199. | |
[5] | 李明广. 基坑群中相邻围护结构受力变形特性研究[D]. 上海: 上海交通大学, 2016. |
LI Mingguang. Deformation behavior of adjacent retaining walls in group excavation[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
[6] | 叶建峰, 林海, 颜桂云. 相邻双基坑开挖失效机理及破坏模式分析[J]. 工业建筑, 2017, 47(2): 105-112. |
YE Jianfeng, LIN Hai, YAN Guiyun. Analysis on failure mechanism and failure mode of adjacent twin excavations[J]. Industrial Construction, 2017, 47(2): 105-112. | |
[7] |
NG C W W, ZHENG G, NI J J, et al. Use of unsaturated small-strain soil stiffness to the design of wall deflection and ground movement adjacent to deep excavation[J]. Computers and Geotechnics, 2020, 119: 103375.
doi: 10.1016/j.compgeo.2019.103375 URL |
[8] |
LIKITLERSUANG S, SURARAK C, WANATOWSKI D, et al. Finite element analysis of a deep excavation: A case study from the Bangkok MRT[J]. Soils and Foundations, 2013, 53(5): 756-773.
doi: 10.1016/j.sandf.2013.08.013 URL |
[9] | 张娇. 上海软土小应变特性及其在基坑工程中的应用[D]. 上海: 同济大学, 2017. |
ZHANG Jiao. Small strain stiffness properties of Shanghai soft soils and application in deep excavations[D]. Shanghai: Tongji University, 2017. | |
[10] |
ZHANG Z J, LI M G, CHEN J J, et al. Innovative construction method for oversized excavations with bipartition walls[J]. Journal of Construction Engineering and Management, 2017, 143(8): 04017056.
doi: 10.1061/(ASCE)CO.1943-7862.0001357 URL |
[11] | KARL T. Theoretical Soil Mechanics[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1943. |
[12] |
PATEL S, DEB K. Study of active earth pressure behind a vertical retaining wall subjected to rotation about the base[J]. International Journal of Geomechanics, 2020, 20(4): 04020028.
doi: 10.1061/(ASCE)GM.1943-5622.0001639 URL |
[13] |
CHEN J J, LI M G, WANG J H. Active earth pressure against rigid retaining walls subjected to confined cohesionless soil[J]. International Journal of Geomechanics, 2017, 17(6): 06016041.
doi: 10.1061/(ASCE)GM.1943-5622.0000855 URL |
[14] |
LI M G, CHEN J J, WANG J H. Arching effect on lateral pressure of confined granular material: Numerical and theoretical analysis[J]. Granular Matter, 2017, 19(2): 1-11.
doi: 10.1007/s10035-016-0682-5 URL |
[15] |
RAO P P, CHEN Q S, ZHOU Y T, et al. Determination of active earth pressure on rigid retaining wall considering arching effect in cohesive backfill soil[J]. International Journal of Geomechanics, 2016, 16(3): 04015082.
doi: 10.1061/(ASCE)GM.1943-5622.0000589 URL |
[16] |
HASHASH Y M A, WHITTLE A J. Mechanisms of load transfer and arching for braced excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 187-197.
doi: 10.1061/(ASCE)1090-0241(2002)128:3(187) URL |
[17] |
HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318.
doi: 10.1061/(ASCE)0733-9410(1985)111:3(302) URL |
[1] | 潘上, 刘谨豪, 张琪, 叶冠林. 三轴仪K0系数测量与应力路径试验功能的研发[J]. 上海交通大学学报, 2021, 55(4): 372-379. |
[2] | 范晓真, 许海明, 徐长节, 方焘, 谭勇. 非对称开挖砂性土基坑刚性支护结构解析解[J]. 上海交通大学学报, 2020, 54(4): 397-405. |
[3] | 郑启宇,夏小和,李明广,张扬清. 深基坑降承压水对墙体变形和地表沉降的影响[J]. 上海交通大学学报, 2020, 54(10): 1094-1100. |
[4] | 应宏伟,梁文鹏. 方竖井基坑平动模式挡墙的主动土压力[J]. 上海交通大学学报(自然版), 2018, 52(11): 1459-1466. |
[5] | 詹永祥1,姚海林1,董启朋1,王家强2,贺东平3. 松散体滑坡抗滑桩加固的土拱效应分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1372-1376. |
[6] | 张常光1,张庆贺2,张振光3. 盾构穿过矿山法隧道的管片特性现场试验研究[J]. 上海交通大学学报(自然版), 2013, 47(09): 1454-1458. |
[7] | 申明亮, 廖少明, 邵伟. 考虑内坑影响的坑中坑基坑被动土压力叠加算法[J]. 上海交通大学学报(自然版), 2012, 46(01): 79-83. |
[8] | 雷晗, 陈锦剑, 王建华, 朱熊. 大直径砼顶管的管道受力特性分析[J]. 上海交通大学学报, 2011, 45(10): 1493-1497. |
[9] | 刘发前, 王建华. 非均匀堆载作用下圆形基坑主动土压力分析[J]. 上海交通大学学报, 2006, 40(12): 2134-2137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||