上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 498-505.doi: 10.16183/j.cnki.jsjtu.2021.094
秦艺超1, 黄礼敏1(), 王骁2, 马学文1, 段文洋1, 郝伟1
收稿日期:
2021-03-23
出版日期:
2022-04-28
发布日期:
2022-05-07
通讯作者:
黄礼敏
E-mail:huanglimin@hrbeu.edu.cn
作者简介:
秦艺超(1996-),男,山西省临汾市人,硕士生,从事波浪反演研究.
基金资助:
QIN Yichao1, HUANG Limin1(), WANG Xiao2, MA Xuewen1, DUAN Wenyang1, HAO Wei1
Received:
2021-03-23
Online:
2022-04-28
Published:
2022-05-07
Contact:
HUANG Limin
E-mail:huanglimin@hrbeu.edu.cn
摘要:
海洋波浪会对船舶营运和安全产生不利影响,实时准确的随船海浪监测对绿色智能船舶及航行安全至关重要.利用船舶运动反演遭遇海浪信息是一种重要的随船海浪监测手段,具有成本低、时空分辨率高等诸多优点,受到广泛关注.针对现有船舶运动反演海浪模型存在的不足,提出了一种基于人工神经网络(Artificial Neural Network, ANN)的反演模型.以船舶摇荡运动时历作为输入,以波浪时历作为输出,利用人工神经网络进行船舶运动特征提取,输入线性函数进行波面时历反演.为验证反演模型的可行性和精度,开展了船模水池试验.结果表明,提出的基于人工神经网络的测波方法能够很好地实现规则波和不规则波浪时历反演,规则波反演统计误差大多小于10%,不规则波反演误差在10%左右.提出的方法为船舶运动反演海浪时域信息提供了一种有效可行的手段.
中图分类号:
秦艺超, 黄礼敏, 王骁, 马学文, 段文洋, 郝伟. 基于人工神经网络的自航浮标测波方法可行性[J]. 上海交通大学学报, 2022, 56(4): 498-505.
QIN Yichao, HUANG Limin, WANG Xiao, MA Xuewen, DUAN Wenyang, HAO Wei. Feasibility of Wave Measurement by Using a Sailing Buoy and the Artificial Neural Network Technique[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 498-505.
表3
迎浪规则波工况
编号 | 波长 船长比 | 波长/m | 频率/ (rad·s-1) | 周期/s | 波高/m | 编号 | 波长 船长比 | 波长/m | 频率/ (rad·s-1) | 周期/s | 波高/m |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.1 | 1.133 | 7.376 | 0.852 | 0.0227 | 7 | 2.0 | 2.060 | 5.470 | 1.149 | 0.0412 |
2 | 1.4 | 1.442 | 6.538 | 0.961 | 0.0288 | 8 | 2.1 | 2.163 | 5.338 | 1.177 | 0.0433 |
3 | 1.6 | 1.648 | 6.116 | 1.027 | 0.0330 | 9 | 2.2 | 2.266 | 5.215 | 1.205 | 0.0453 |
4 | 1.7 | 1.751 | 5.933 | 1.059 | 0.0350 | 10 | 2.5 | 2.575 | 4.893 | 1.284 | 0.0515 |
5 | 1.8 | 1.854 | 5.766 | 1.090 | 0.0371 | 11 | 3.0 | 3.090 | 4.466 | 1.407 | 0.0309 |
6 | 1.9 | 1.957 | 5.612 | 1.120 | 0.0391 | 12 | 3.5 | 3.605 | 4.135 | 1.520 | 0.0600 |
[1] | CLAUSS G F, KOSLECK S, TESTA D. Critical si-tuations of vessel operations in short crested seas: Forecast and decision support system [C]//Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, USA: ASME, 2010: 319-332. |
[2] |
STREDULINSKY D C, THORNHILL E M. Ship motion and wave radar data fusion for shipboard wave measurement[J]. Journal of Ship Research, 2011, 55(2): 73-85.
doi: 10.5957/jsr.2011.55.2.73 URL |
[3] | THORNHILL E M, STREDULINSKY D C. Real time local sea state measurement using wave radar and ship motions[J]. Transactions-Society of Naval Architects and Marine Engineers, 2010, 118: 248-259. |
[4] |
NIELSEN U D. A concise account of techniques available for shipboard sea state estimation[J]. Ocean Engineering, 2017, 129: 352-362.
doi: 10.1016/j.oceaneng.2016.11.035 URL |
[5] |
ISEKI T, OHTSU K. Bayesian estimation of directional wave spectra based on ship motions[J]. Control Engineering Practice, 2000, 8(2): 215-219.
doi: 10.1016/S0967-0661(99)00156-2 URL |
[6] | ISEKI T. Extended Bayesian estimation of directional wave spectra [C]//Proceedings of ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada: ASME, 2004: 611-616. |
[7] |
NIELSEN U D. Estimations of on-site directional wave spectra from measured ship responses[J]. Marine Structures, 2006, 19(1): 33-69.
doi: 10.1016/j.marstruc.2006.06.001 URL |
[8] |
NIELSEN U D. Introducing two hyperparameters in Bayesian estimation of wave spectra[J]. Probabilistic Engineering Mechanics, 2008, 23(1): 84-94.
doi: 10.1016/j.probengmech.2007.10.007 URL |
[9] |
PASCOAL R, GUEDES SOARES C. Non-parametric wave spectral estimation using vessel motions[J]. Applied Ocean Research, 2008, 30(1): 46-53.
doi: 10.1016/j.apor.2008.03.003 URL |
[10] |
PASCOAL R, GUEDES SOARES C. Kalman filtering of vessel motions for ocean wave directional spectrum estimation[J]. Ocean Engineering, 2009, 36(6/7): 477-488.
doi: 10.1016/j.oceaneng.2009.01.013 URL |
[11] |
PASCOAL R, PERERA L P, GUEDES SOARES C. Estimation of directional sea spectra from ship motions in sea trials[J]. Ocean Engineering, 2017, 132: 126-137.
doi: 10.1016/j.oceaneng.2017.01.020 URL |
[12] | NIELSEN U D, GALEAZZI R, BRODTKORB A H. Evaluation of shipboard wave estimation techniques through model-scale experiments [C]//OCEANS 2016-Shanghai. Piscataway, NJ, USA: IEEE, 2016: 1-8. |
[13] | MAK B, DÜZ B. Ship as a wave buoy: Estimating relative wave direction from in-service ship motion measurements using machine learning [C]//Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow, UK: ASME, 2019, V009T13A043. |
[14] | CHENG X, LI G Y, SKULSTAD R, et al. Modeling and analysis of motion data from dynamically positioned vessels for sea state estimation [C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 6644-6650. |
[15] | SIDARTA D E, TCHERNIGUIN N, TAN J H, et al. An ANN-based model to artificially transform a floating vessel into a wave monitoring buoy[DB/OL]. (2020-10-27) [2021-03-22]. https://onepetro.org/OTCASIA/proceedings-abstract/20OTCA/1-20OTCA/450910. |
[16] | THIJS H. New C-DRONE-for undisturbed wave spectrum measurements [EB/OL] (2017-12-29) [2021-03-22]. https://www.marinetechnologynews.com/news/drone-undisturbed-spectrum-measurements-555571/. |
[17] | 戴现令, 娄虎, 阮文涛, 等. 一种水质检测三体船设计及其水阻力计算[J]. 装备制造技术, 2020(5): 31-34. |
DAI Xianling, LOU Hu, RUAN Wentao, et al. Design of a trimaran for water quality detection and calculation of its water resistance[J]. Equipment Manufacturing Technology, 2020(5): 31-34. | |
[18] | 陈雨虹. 基于神经网络的三自由度直升机智能控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
CHEN Yuhong. Research on neural network based intelligent control method for 3-dof helicopters[D]. Harbin: Harbin Institute of Technology, 2019. | |
[19] | 侯海艳, 侯金亮, 黄春林, 等. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251. |
HOU Haiyan, HOU Jinliang, HUANG Chunlin, et al. Retrieve snow depth of north of Xinjiang region from ARMS2 data based on artificial neural network technology[J]. Remote Sensing Technology and Application, 2018, 33(2): 241-251. | |
[20] | 喻祥尤. 基于深度学习的机器人场景识别研究[D]. 沈阳: 沈阳工业大学, 2017. |
YU Xiangyou. Research on robot scene recognition based on depth learning[D]. Shenyang: Shenyang University of Technology, 2017. |
[1] | 潘轶彪1, 袁景淇1, 朱凯1, 陈宇2, 张锐锋2. 基于多层感知器的异常数据实时检测方法[J]. 上海交通大学学报(自然版), 2011, 45(08): 1226-1229. |
[2] | 李伟,何其昌,范秀敏,. 基于汽车操纵信号的驾驶员疲劳状态检测[J]. 上海交通大学学报(自然版), 2010, 44(02): 292-0296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||