上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (2): 201-213.doi: 10.16183/j.cnki.jsjtu.2020.435

• • 上一篇    下一篇

基于改进候鸟迁徙优化的多目标批量流混合流水车间调度

汤洪涛, 王丹南, 邵益平(), 赵文彬, 江伟光, 陈青丰   

  1. 浙江工业大学 机械工程学院, 杭州 310023
  • 收稿日期:2020-12-28 出版日期:2022-02-28 发布日期:2022-03-03
  • 通讯作者: 邵益平 E-mail:syp123gh@zjut.edu.cn
  • 作者简介:汤洪涛(1976-),男,湖北省十堰市人,副教授,研究方向为生产与物流系统建模与优化、智能工厂规划.
  • 基金资助:
    国家重点研发计划(2018YFB1308100);浙江省自然科学基金资助项目(LY19G020010)

A Modified Migrating Birds Optimization for Multi-Objective Lot Streaming Hybrid Flowshop Scheduling

TANG Hongtao, WANG Dannan, SHAO Yiping(), ZHAO Wenbin, JIANG Weiguang, CHEN Qingfeng   

  1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
  • Received:2020-12-28 Online:2022-02-28 Published:2022-03-03
  • Contact: SHAO Yiping E-mail:syp123gh@zjut.edu.cn

摘要:

针对2+1+1型混合流水车间,研究了多目标不相等批量流混合流水车间调度问题,提出一种基于变邻域搜索的自适应候鸟迁徙优化(AMBO)算法,实现了最小化完工时间与最小平均在制品数量的多目标优化.相比原始候鸟迁徙算法,AMBO算法引入变邻域搜索策略,实现每个算子的权重随迭代次数自适应调整,并提出了时间窗算子,以提升交换算子搜索性能和收敛速度.对随机生成不同规模的订单进行算例研究,结果表明AMBO算法比候鸟迁徙优化算法、遗传算法具有更高的求解质量和收敛性能,从而验证了AMBO算法的有效性.

关键词: 批量流问题, 混合流水车间调度问题, 变邻域搜索, 自适应候鸟迁徙优化, 时间窗算子

Abstract:

This paper proposes an adaptive migrating birds optimization (AMBO) method based on variable neighborhood search to solve the inequal lot streaming hybrid flowshop scheduling problem (ILS-HFSP) for a 2+1+1 hybrid flowshop, which realizes multi-objective optimization of minimizing makespan and minimum average work in process. Compared with the original migrating birds optimization, the AMBO algorithm adopts the variable neighborhood search strategy with an adaptive selection probability of neighborhood operator that is adaptively adjusted with the number of iterations. Besides, a time-window operator is adopted to improve the search performance of exchange operators and convergence rate. Several orders of different scales generated randomly are studied, and the results show that the AMBO algorithm has a higher solution quality and a better convergence performance than the migrating birds optimization algorithm and the genetic algorithm, thereby verifying the effectiveness of the AMBO algorithm.

Key words: lot streaming problem, hybrid flowshop scheduling problem, variable neighborhood search, adaptive migrating birds optimization (AMBO), time window operation

中图分类号: