上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (2): 201-213.doi: 10.16183/j.cnki.jsjtu.2020.435
汤洪涛, 王丹南, 邵益平(), 赵文彬, 江伟光, 陈青丰
收稿日期:
2020-12-28
出版日期:
2022-02-28
发布日期:
2022-03-03
通讯作者:
邵益平
E-mail:syp123gh@zjut.edu.cn
作者简介:
汤洪涛(1976-),男,湖北省十堰市人,副教授,研究方向为生产与物流系统建模与优化、智能工厂规划.
基金资助:
TANG Hongtao, WANG Dannan, SHAO Yiping(), ZHAO Wenbin, JIANG Weiguang, CHEN Qingfeng
Received:
2020-12-28
Online:
2022-02-28
Published:
2022-03-03
Contact:
SHAO Yiping
E-mail:syp123gh@zjut.edu.cn
摘要:
针对2+1+1型混合流水车间,研究了多目标不相等批量流混合流水车间调度问题,提出一种基于变邻域搜索的自适应候鸟迁徙优化(AMBO)算法,实现了最小化完工时间与最小平均在制品数量的多目标优化.相比原始候鸟迁徙算法,AMBO算法引入变邻域搜索策略,实现每个算子的权重随迭代次数自适应调整,并提出了时间窗算子,以提升交换算子搜索性能和收敛速度.对随机生成不同规模的订单进行算例研究,结果表明AMBO算法比候鸟迁徙优化算法、遗传算法具有更高的求解质量和收敛性能,从而验证了AMBO算法的有效性.
中图分类号:
汤洪涛, 王丹南, 邵益平, 赵文彬, 江伟光, 陈青丰. 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56(2): 201-213.
TANG Hongtao, WANG Dannan, SHAO Yiping, ZHAO Wenbin, JIANG Weiguang, CHEN Qingfeng. A Modified Migrating Birds Optimization for Multi-Objective Lot Streaming Hybrid Flowshop Scheduling[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 201-213.
表4
算法结果对比
序号 | AMBO | MBO | GA | |||||
---|---|---|---|---|---|---|---|---|
最优解均值 | 标准偏差 | 最优解均值 | 标准偏差 | 最优解均值 | 标准偏差 | |||
1 | 0.0649 | 0.00384 | 0.0653 | 0.00404 | 0.0664 | 0.00684 | ||
2 | 0.0625 | 0.00335 | 0.0626 | 0.00334 | 0.0642 | 0.00759 | ||
3 | 0.0683 | 0.00354 | 0.0726 | 0.00369 | 0.0764 | 0.00795 | ||
4 | 0.0686 | 0.00284 | 0.0784 | 0.00365 | 0.0814 | 0.00718 | ||
5 | 0.0748 | 0.00321 | 0.0765 | 0.00364 | 0.0787 | 0.00768 | ||
6 | 0.0646 | 0.00322 | 0.0795 | 0.00342 | 0.0834 | 0.00747 | ||
7 | 0.0706 | 0.00317 | 0.0796 | 0.00391 | 0.0777 | 0.00734 | ||
8 | 0.0715 | 0.00336 | 0.0771 | 0.00387 | 0.0804 | 0.00847 | ||
9 | 0.0673 | 0.00341 | 0.0715 | 0.00405 | 0.0761 | 0.00757 | ||
10 | 0.0711 | 0.00371 | 0.0826 | 0.00367 | 0.0817 | 0.00754 | ||
11 | 0.0621 | 0.00315 | 0.0645 | 0.00378 | 0.0794 | 0.00781 | ||
12 | 0.0733 | 0.00344 | 0.0799 | 0.00363 | 0.0844 | 0.00759 | ||
13 | 0.0875 | 0.00334 | 0.0884 | 0.00413 | 0.0919 | 0.00763 | ||
15 | 0.0865 | 0.00325 | 0.0886 | 0.00357 | 0.0884 | 0.00804 | ||
14 | 0.0686 | 0.00311 | 0.0726 | 0.00398 | 0.0757 | 0.00725 | ||
16 | 0.0639 | 0.00324 | 0.0709 | 0.00338 | 0.0704 | 0.00737 | ||
17 | 0.0716 | 0.00315 | 0.0719 | 0.00401 | 0.0717 | 0.00794 | ||
18 | 0.0639 | 0.00341 | 0.0656 | 0.00387 | 0.0732 | 0.00781 | ||
19 | 0.0723 | 0.00331 | 0.0695 | 0.00348 | 0.0774 | 0.00765 | ||
20 | 0.0633 | 0.00345 | 0.0644 | 0.00367 | 0.0706 | 0.00742 | ||
21 | 0.0643 | 0.00344 | 0.0684 | 0.00379 | 0.0704 | 0.00806 | ||
22 | 0.0659 | 0.00339 | 0.0724 | 0.00344 | 0.0722 | 0.00774 | ||
23 | 0.0665 | 0.00338 | 0.0726 | 0.00404 | 0.0719 | 0.00735 | ||
24 | 0.0649 | 0.00326 | 0.0686 | 0.00367 | 0.0704 | 0.00784 | ||
25 | 0.0685 | 0.00328 | 0.0699 | 0.00421 | 0.0717 | 0.00785 | ||
26 | 0.0696 | 0.00285 | 0.0699 | 0.00368 | 0.0707 | 0.00752 | ||
27 | 0.0724 | 0.00324 | 0.0726 | 0.00354 | 0.0731 | 0.00728 | ||
28 | 0.0624 | 0.00337 | 0.0679 | 0.00364 | 0.0695 | 0.00838 | ||
29 | 0.0688 | 0.00315 | 0.0695 | 0.00392 | 0.0714 | 0.00763 | ||
30 | 0.0691 | 0.00308 | 0.0719 | 0.00390 | 0.0737 | 0.00734 | ||
均值 | 0.0690 | 0.00330 | 0.0731 | 0.00375 | 0.0758 | 0.00764 |
表6
3种算法在不同规模下的实验结果
任务 规模 | 算法 | 最优解 均值 | 解的标准 偏差 | 平均收敛迭 代次数/次 | 算法平均 收敛时间/s |
---|---|---|---|---|---|
30 | GA | 0.0771 | 0.00798 | 128 | 362.24 |
MBO | 0.0748 | 0.00384 | 112 | 466.25 | |
AMBO | 0.0706 | 0.00376 | 87 | 493.46 | |
40 | GA | 0.0778 | 0.00784 | 167 | 560.32 |
MBO | 0.0752 | 0.00391 | 154 | 650.21 | |
AMBO | 0.0714 | 0.00364 | 125 | 708.72 | |
50 | GA | 0.0806 | 0.00814 | 205 | 780.32 |
MBO | 0.0766 | 0.00414 | 179 | 920.31 | |
AMBO | 0.0721 | 0.00385 | 162 | 994.63 |
表7
当ρ=10,20,30时,GA、MBO与AMBO算法RPI值比较
任务规模 | 算法 | ρ=10 | ρ=20 | ρ=30 | |||||
---|---|---|---|---|---|---|---|---|---|
| s | | s | | s | ||||
60 | GA | 5.78 | 4.78 | 8.15 | 4.32 | 13.01 | 3.81 | ||
MBO | 12.21 | 3.79 | 11.06 | 3.64 | 8.70 | 3.43 | |||
AMBO | 3.37 | 2.78 | 2.84 | 2.57 | 2.61 | 2.44 | |||
80 | GA | 3.73 | 5.24 | 7.27 | 4.71 | 11.42 | 4.29 | ||
MBO | 11.93 | 4.13 | 10.38 | 3.81 | 7.94 | 3.72 | |||
AMBO | 3.54 | 3.11 | 3.13 | 2.79 | 2.89 | 2.58 | |||
100 | GA | 2.41 | 5.67 | 5.61 | 5.12 | 7.56 | 4.52 | ||
MBO | 12.71 | 4.85 | 10.47 | 4.45 | 7.46 | 4.23 | |||
AMBO | 5.74 | 3.43 | 3.74 | 3.12 | 3.31 | 2.88 |
[1] | 周炳海, 刘文龙. 考虑能耗和准时的混合流水线多目标调度[J]. 上海交通大学学报, 2019, 53(7):773-779. |
ZHOU Binghai, LIU Wenlong. Multi-objective hybrid flow-shop scheduling problem considering energy consumption and on-time delivery[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7):773-779. | |
[2] |
ZHOU X J, YU M Q. Semi-dynamic maintenance scheduling for multi-station series systems in multi-specification and small-batch production[J]. Reliability Engineering & System Safety, 2020, 195:106753.
doi: 10.1016/j.ress.2019.106753 URL |
[3] | 陶辛阳, 夏唐斌, 奚立峰. 基于健康指数的预防性维护与多目标生产调度联合优化建模[J]. 上海交通大学学报, 2014, 48(8):1170-1174. |
TAO Xinyang, XIA Tangbin, XI Lifeng. Health-index-based joint optimization of preventive maintenance and multi-attribute production scheduling[J]. Journal of Shanghai Jiao Tong University, 2014, 48(8):1170-1174. | |
[4] | 李颖俐, 李新宇, 高亮. 混合流水车间调度问题研究综述[J]. 中国机械工程, 2020, 31(23):2798-2813. |
LI Yingli, LI Xinyu, GAO Liang. Review on hybrid flow shop scheduling problems[J]. China Mechanical Engineering, 2020, 31(23):2798-2813. | |
[5] |
ZHANG B, PAN Q K, GAO L, et al. An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming[J]. Applied Soft Computing, 2017, 52:14-27.
doi: 10.1016/j.asoc.2016.12.021 URL |
[6] |
MENG T, PAN Q K, LI J Q, et al. An improved migrating birds optimization for an integrated lot-streaming flow shop scheduling problem[J]. Swarm and Evolutionary Computation, 2018, 38:64-78.
doi: 10.1016/j.swevo.2017.06.003 URL |
[7] |
ZHANG M, TAN Y T, ZHU J H, et al. A competitive and cooperative migrating birds optimization algorithm for vary-sized batch splitting scheduling problem of flexible job-shop with setup time[J]. Simulation Modelling Practice and Theory, 2020, 100:102065.
doi: 10.1016/j.simpat.2019.102065 URL |
[8] |
NADERI B, YAZDANI M. A model and imperialist competitive algorithm for hybrid flow shops with sublots and setup times[J]. Journal of Manufacturing Systems, 2014, 33(4):647-653.
doi: 10.1016/j.jmsy.2014.06.002 URL |
[9] |
LALITHA J L, MOHAN N R, PILLAI V M. Lot streaming in [N-1](1)+N(m) hybrid flow shop[J]. Journal of Manufacturing Systems, 2017, 44:12-21.
doi: 10.1016/j.jmsy.2017.04.018 URL |
[10] | 李航, 章旸, 叶鸿庆, 等. 考虑批量流与换模时间的柔性生产线调度方法研究[J]. 工业工程与管理, 2020, 25(3):179-187. |
LI Hang, ZHANG Yang, YE Hongqing, et al. Research on flexible production line scheduling with lot streaming and setup times[J]. Industrial Engineering and Management, 2020, 25(3):179-187. | |
[11] |
ZHANG B, PAN Q K, GAO L, et al. A multi-objective migrating birds optimization algorithm for the hybrid flowshop rescheduling problem[J]. Soft Computing, 2019, 23(17):8101-8129.
doi: 10.1007/s00500-018-3447-8 URL |
[12] |
LI J Q, TAO X R, JIA B X, et al. Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots[J]. Swarm and Evolutionary Computation, 2020, 52:100600.
doi: 10.1016/j.swevo.2019.100600 URL |
[13] |
GONG D W, HAN Y Y, SUN J Y. A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems[J]. Knowledge-Based Systems, 2018, 148:115-130.
doi: 10.1016/j.knosys.2018.02.029 URL |
[14] | 沈倩, 管在林, 张正敏, 等. 面向卷烟生产调度的集成产能过滤算法与仿真技术的优化框架[DB/OL].(2020 -10-26)[2021-02-07]. https://kns.cnki.net/kcms/detail/11.5946.TP.20201026.1016.012.html. |
SHEN Qian, GUAN Zailin, ZHANG Zhengmin,, et al. An optimization framework based on simulation integrated capacity filtering algorithm for cigarette production scheduling[DB/OL].(2020 -10-26)[2021-02-07]. https://kns.cnki.net/kcms/detail/11.5946.TP.20201026.1016.012.html. | |
[15] | 吕洁, 郭婷芳, 韩文民. 虚拟制造单元瓶颈缓冲区容量优化[J]. 组合机床与自动化加工技术, 2016(12):121-124. |
LV Jie, GUO Tingfang, HAN Wenmin. Bottleneck buffer allocation optimization of the virtual manufacturing[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(12):121-124. | |
[16] | ENGEHAUSEN F, LÖDDING H. Managing sequence-dependent setup times—The target conflict between output rate, WIP and fluctuating throughput times for setup cycles[J]. Production Planning & Control, 2020: 1-17. |
[17] |
DUMAN E, UYSAL M, ALKAYA A F. Migrating birds optimization: A new metaheuristic approach and its performance on quadratic assignment problem[J]. Information Sciences, 2012, 217:65-77.
doi: 10.1016/j.ins.2012.06.032 URL |
[18] |
DINDAR O Z. An improvement on the migrating birds optimization with a problem-specific neighboring function for the multi-objective task allocation problem[J]. Expert Systems With Applications, 2017, 67:304-311.
doi: 10.1016/j.eswa.2016.09.035 URL |
[19] | EXPOSITO IZQUIERDO C, DE ARMAS J, LALLA RUIZ E. Multi-leader migrating birds optimization: A novel nature-inspired metaheuristic for combinatorial problems[J]. International Journal of Bio-Inspired Computation, 2017, 10(4):1. |
[20] | ALMONACID B, SOTO R, CRAWFORD B. Comparing three simple ways of generating neighboring solutions when solving the cell formation problem using two versions of migrating birds optimization [C]//2017 17th International Conference on Computational Science and Its Applications (ICCSA) . Piscataway, NJ, USA: IEEE, 2017: 1-9. |
[21] | TONGUR V, ÜLKER E. The analysis of migrating birds optimization algorithm with neighborhood operator on traveling salesman problem[C]//The 19th Asia Pacific Symposium. Bangkok, Thailand: Springer, 2015: 1-11. |
[22] |
ROPKE S, PISINGER D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006, 40(4):455-472.
doi: 10.1287/trsc.1050.0135 URL |
[23] | 姚妮. 混合候鸟迁徙优化算法求解柔性作业车间调度问题[J]. 华中师范大学学报(自然科学版), 2016, 50(1):38-42. |
YAO Ni. Hybrid migrating brids optimization algorithm for the flexible job shop scheduling problem[J]. Journal of Central China Normal University (Natural Sciences), 2016, 50(1):38-42. | |
[24] | 唐立力. 求解低碳调度问题的改进型候鸟优化算法[J]. 计算机工程与应用, 2016, 52(17):166-171. |
TANG Lili. Improved migrating birds optimization algorithm to solve low-carbon scheduling problem[J]. Computer Engineering and Applications, 2016, 52(17):166-171. |
[1] | 蒋小康, 张朋, 吕佑龙, 赵新明, 张洁. 基于混合蚁群算法的半导体生产线炉管区调度方法[J]. 上海交通大学学报, 2020, 54(8): 792-804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||