上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (12): 1649-1657.doi: 10.16183/j.cnki.jsjtu.2021.522
所属专题: 《上海交通大学学报》2022年“电子信息与电气工程”专题
张光明1,3, 雷宇2,3(), 陈后鹏3, 俞秋瑶3, 宋志棠1,3
收稿日期:
2021-12-21
出版日期:
2022-12-28
发布日期:
2023-01-05
通讯作者:
雷宇
E-mail:leiyu@mail.sim.ac.cn.
作者简介:
张光明(1996-),男,河南省漯河市人,硕士生,现主要从事相变存储器芯片设计研究.
基金资助:
ZHANG Guangming1,3, LEI Yu2,3(), CHEN Houpeng3, YU Qiuyao3, SONG Zhitang1,3
Received:
2021-12-21
Online:
2022-12-28
Published:
2023-01-05
Contact:
LEI Yu
E-mail:leiyu@mail.sim.ac.cn.
摘要:
三维相变存储芯片1S1R存储单元由双向阈值选通管(OTS)和相变存储器件(PCM)串联组成.为了解决现有OTS和PCM电路仿真模型不能准确模拟器件电学特性和物理特性、不适用于限制型PCM等问题,提出了一种采用Verilog-A语言实现的1S1R电路仿真模型.该模型实现了对OTS电学特性和PCM相变过程中电流、温度、熔融比例、晶态比例和非晶比例变化的模拟,具有良好的收敛性和较快的仿真速度,仿真结果与器件实际测试结果吻合.与传统模型相比,该模型针对限制型PCM特点,实现了对PCM熔融过程、晶态非线性、熔融电阻率稳定和OTS亚阈值非线性、双向选通特性的模拟和集成.分析了OTS亚阈值非线性参数和读电压窗口的关系,发现当OTS阈值电流约等于PCM阈值电流时读窗口最大;展示了1S1R单元直流和阵列瞬态仿真结果,为三维相变存储器的电路设计和仿真提供了基础.
中图分类号:
张光明, 雷宇, 陈后鹏, 俞秋瑶, 宋志棠. 一种三维相变存储器1S1R存储单元电路仿真模型[J]. 上海交通大学学报, 2022, 56(12): 1649-1657.
ZHANG Guangming, LEI Yu, CHEN Houpeng, YU Qiuyao, SONG Zhitang. A Circuit Simulation Model of 1S1R for 3D Phase-Change Memory[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1649-1657.
[1] |
RAO F, DING K Y, ZHOU Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing[J]. Science, 2017, 358(6369): 1423-1427.
doi: 10.1126/science.aao3212 pmid: 29123020 |
[2] | 李晓云, 陈后鹏, 雷宇, 等. 一种基于相变存储器的高速读出电路设计[J]. 上海交通大学学报, 2019, 53(8): 936-942. |
LI Xiaoyun, CHEN Houpeng, LEI Yu, et al. A high-speed read circuit for phase-change random-access memory[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8): 936-942. | |
[3] | SONG Z T, CAI D L, LI X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application[C]//IEEE International Electron Devices Meeting. San Francisco, California, USA: IEEE, 2018: 27.5. 1-27.5.4. |
[4] | 吴磊, 蔡道林, 陈一峰, 等. 连续性RESET/SET对相变存储器疲劳特性的影响[J]. 上海交通大学学报, 2021, 55(9): 1134-1141. |
WU Lei, CAI Daolin, CHEN Yifeng, et al. Impact of continuous RESET/SET operations on endurance characteristic of phase change memory[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1134-1141. | |
[5] |
XIE C C, LI X, LEI Y, et al. BIST-based fault diagnosis for PCM with enhanced test scheme and fault-free region finding algorithm[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(7): 1652-1664.
doi: 10.1109/TVLSI.2020.2986469 URL |
[6] |
ZHU M, REN K, SONG Z T. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory[J]. MRS Bulletin, 2019, 44(9): 715-720.
doi: 10.1557/mrs.2019.206 URL |
[7] |
NOÉ P, VERDY A, D’ACAPITO F, et al. Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed[J]. Science Advances, 2020, 6(9): 2830.
doi: 10.1126/sciadv.aay2830 pmid: 32158940 |
[8] |
CHENG H Y, CARTA F, CHIEN W C, et al. 3D cross-point phase-change memory for storage-class memory[J]. Journal of Physics D: Applied Physics, 2019, 52(47): 473002.
doi: 10.1088/1361-6463/ab39a0 URL |
[9] | CHOI J T, AN B K, KIM T T H, et al. Development of PCM and OTS macro-models for HSPICE compatible simulation[C]//Electron Devices Technology and Manufacturing Conference. Singapore: IEEE, 2019: 463-465. |
[10] |
CHEN X H, DING F L, HUANG X Q, et al. A robust and efficient compact model for phase-change memory circuit simulations[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4404-4410.
doi: 10.1109/TED.2021.3098656 URL |
[11] |
CHEN Z Q, TONG H, CAI W, et al. Modeling and simulations of the integrated device of phase change memory and ovonic threshold switch selector with a confined structure[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1616-1621.
doi: 10.1109/TED.2021.3059436 URL |
[12] |
CHEN X H, HU H F, HUANG X Q, et al. A SPICE model of phase change memory for neuromorphic circuits[J]. IEEE Access, 2020, 8: 95278-95287.
doi: 10.1109/ACCESS.2020.2995907 URL |
[13] |
PIGOT C, BOCQUET M, GILIBERT F, et al. Comprehensive phase-change memory compact model for circuit simulation[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4282-4289.
doi: 10.1109/TED.2018.2862155 URL |
[14] |
SONODA K, SAKAI A, MONIWA M, et al. A compact model of phase-change memory based on rate equations of crystallization and amorphization[J]. IEEE Transactions on Electron Devices, 2008, 55(7): 1672-1681.
doi: 10.1109/TED.2008.923740 URL |
[15] | WOO J, YU S M. Design space exploration of ovonic threshold switch (OTS) for sub-threshold read operation in cross-point memory arrays[C]//IEEE International Symposium on Circuits and Systems. Sapporo, Japan: IEEE, 2019: 1-5. |
[16] |
YOO S, LEE H D, LEE S, et al. Electro-thermal model for thermal disturbance in cross-point phase-change memory[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1454-1459.
doi: 10.1109/TED.2019.2960444 URL |
[17] |
TITIRSHA T, SONG S H, DAS A, et al. Endurance-aware mapping of spiking neural networks to neuromorphic hardware[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(2): 288-301.
doi: 10.1109/TPDS.2021.3065591 URL |
[18] |
CHEN W C, YIN W Y, LI E P, et al. Electrothermal investigation on vertically aligned single-walled carbon nanotube contacted phase-change memory array for 3-D ICs[J]. IEEE Transactions on Electron Devices, 2015, 62(10): 3258-3263.
doi: 10.1109/TED.2015.2466674 URL |
[19] |
HU H F, LIU D Y, CHEN X H, et al. A compact phase change memory model with dynamic state variables[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 133-139.
doi: 10.1109/TED.2019.2956193 URL |
[20] | FAZIO A. Advanced technology and systems of cross point memory[C]//IEEE International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2020: 24.1. 1-24.1.4. |
[21] |
XIONG F, BAE M H, DAI Y, et al. Self-aligned nanotube-nanowire phase change memory[J]. Nano Letters, 2013, 13(2): 464-469.
doi: 10.1021/nl3038097 pmid: 23259592 |
[22] |
SCOGGIN J, SILVA H, GOKIRMAK A. Field dependent conductivity and threshold switching in amorphous chalcogenides—Modeling and simulations of ovonic threshold switches and phase change memory devices[J]. Journal of Applied Physics, 2020, 128(23): 234503.
doi: 10.1063/5.0027671 URL |
[23] |
CIL K, DIRISAGLIK F, ADNANE L, et al. Electrical resistivity of liquid Ge2Sb2Te5 based on thin-film and nanoscale device measurements[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 433-437.
doi: 10.1109/TED.2012.2228273 URL |
[24] |
KIM S, KIM H D, CHOI S J. Intrinsic threshold switching responses in AsTeSi thin film[J]. Journal of Alloys and Compounds, 2016, 667: 91-95.
doi: 10.1016/j.jallcom.2016.01.146 URL |
[25] | LIU D Y, ZHANG L N, LIN X N, et al. A smooth and continuous phase change memory SPICE model for improved convergence[C]//IEEE 2nd Electron Devices Technology and Manufacturing Conference. Kobe, Japan: IEEE, 2018: 86-88. |
[1] | 吴磊, 蔡道林, 陈一峰, 刘源广, 闫帅, 李阳, 余力, 谢礼, 宋志棠. 连续性RESET/SET对相变存储器疲劳特性的影响[J]. 上海交通大学学报, 2021, 55(9): 1134-1141. |
[2] | 李晓云,陈后鹏,雷宇,李喜,王倩,宋志棠. 一种基于相变存储器的高速读出电路设计[J]. 上海交通大学学报, 2019, 53(8): 936-942. |
[3] | 李鸽子1,陈小刚1,陈后鹏1,焦圣品2,宋志棠1,陈邦明1. 支持逻辑电路辅助计算的相变存储系统设计[J]. 上海交通大学学报(自然版), 2018, 52(1): 90-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||