上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (11): 1532-1540.doi: 10.16183/j.cnki.jsjtu.2021.318
收稿日期:
2021-08-20
出版日期:
2022-11-28
发布日期:
2022-12-02
通讯作者:
汪怡平
E-mail:wangyiping@whut.edu.cn
作者简介:
陈志鑫(1996-),男,江苏省盐城市人,硕士生,从事客车内飞沫传播研究.
基金资助:
CHEN Zhixin1, WANG Yiping1(), YANG Yafeng1, SU Jianjun2, YANG Bin3
Received:
2021-08-20
Online:
2022-11-28
Published:
2022-12-02
Contact:
WANG Yiping
E-mail:wangyiping@whut.edu.cn
摘要:
为了研究大客车内携带病毒飞沫的扩散特性,预测客车中空气传播病毒感染乘客的风险概率,基于计算流体力学的数值仿真与Wells-Riley方程相结合,建立夏天制冷空调开启状态下大客车的数值模型.通过对车内流场的组织特性分析,结合拉格朗日方法,计算车内病毒携带者咳嗽产生飞沫的扩散过程,分析对比在4种送风方式下携带病毒的飞沫对车内乘客的感染风险.研究发现,车内纵向气流是影响飞沫扩散的关键因素,相较于非对称布置的圆形送风口,客车采用条缝型送风口能够减少车内的纵向气流;采用置换通风的客车内,仅6%的乘客有高于5%概率感染疾病,置换通风在降低飞沫传播感染的风险方面更有效.研究成果可以为客车送风系统的结构设计和降低飞沫传播感染风险提供指导作用.
中图分类号:
陈志鑫, 汪怡平, 杨亚锋, 苏建军, 杨斌. 不同送风方式下大客车内飞沫传播特性研究[J]. 上海交通大学学报, 2022, 56(11): 1532-1540.
CHEN Zhixin, WANG Yiping, YANG Yafeng, SU Jianjun, YANG Bin. Characteristics of Droplet Transmission in Buses in Different Air Supply Modes[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1532-1540.
[1] | World Health Organization. Weekly epidemiological update on COVID-19-17 August 2021[EB/OL]. (2021-08-17) [2021-08-19]. https:∥www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---17-august-2021. |
[2] |
LIU L, LI Y, NIELSEN P V, et al. Short-range airborne transmission of expiratory droplets between two people[J]. Indoor Air, 2017, 27(2): 452-462.
doi: 10.1111/ina.12314 pmid: 27287598 |
[3] |
LUO K W, LEI Z, HAI Z, et al. Transmission of SARS-CoV-2 in public transportation vehicles: A case study in Hunan Province, China[J]. Open Forum Infectious Diseases. US: Oxford University Press, 2020, 7(10): ofaa430.
doi: 10.1093/ofid/ofaa430 URL |
[4] | 河北省卫生健康委员会. 石家庄市新增新冠肺炎确诊病例行动轨迹[EB/OL]. (2021-01-10) [2021-08-19]. http:∥wsjkw.hebei.gov.cn/syyctplj/375370.jhtml. |
Health Commission of Hebei Province. Action track of new confirmed cases of new coronary pneumonia in Shijiazhuang city[EB/OL]. (2021-01-10) [2021-08-19]. http:∥wsjkw.hebei.gov.cn/syyctplj/375370.jhtml. | |
[5] |
DBOUK T, DRIKAKIS D. On airborne virus transmission in elevators and confined spaces[J]. Physics of Fluids, 2021, 33(1): 011905.
doi: 10.1063/5.0038180 URL |
[6] |
林家泉, 孙凤山, 李亚冲. 客舱内呼吸道病原体传播机制与感染风险评估[J]. 中国安全科学学报, 2020, 30(2): 146-151.
doi: 10.16265/j.cnki.issn1003-3033.2020.02.023 |
LIN Jiaquan, SUN Fengshan, LI Yachong. Transmission mechanism of respiratory pathogens in aircraft cabin and infection risk assessment[J]. China Safety Science Journal, 2020, 30(2): 146-151.
doi: 10.16265/j.cnki.issn1003-3033.2020.02.023 |
|
[7] |
YANG X, OU C Y, YANG H Y, et al. Transmission of pathogen-laden expiratory droplets in a coach bus[J]. Journal of Hazardous Materials, 2020, 397: 122609.
doi: 10.1016/j.jhazmat.2020.122609 URL |
[8] |
ZHANG Z H, HAN T, YOO K H, et al. Disease transmission through expiratory aerosols on an urban bus[J]. Physics of Fluids, 2021, 33(1): 015116.
doi: 10.1063/5.0037452 URL |
[9] |
ZHU S W, SREBRIC J, SPENGLER J D, et al. An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments[J]. Building and Environment, 2012, 47: 67-75.
doi: 10.1016/j.buildenv.2011.05.003 pmid: 32288019 |
[10] |
LIU W, WEN J Z, LIN C H, et al. Evaluation of various categories of turbulence models for predicting air distribution in an airliner cabin[J]. Building and Environment, 2013, 65: 118-131.
doi: 10.1016/j.buildenv.2013.03.018 URL |
[11] | 赵梦洋. 基于人体热调节模型的汽车乘员舱热舒适性研究[D]. 武汉: 武汉理工大学, 2015. |
ZHAO Mengyang. Research on thermal comfort of the passenger compartment based on human thermal model[D]. Wuhan: Wuhan University of Technology, 2015. | |
[12] | 王超, 郑小龙, 李亮, 等. Y+值对潜艇流场大涡模拟计算精度的影响[J]. 华中科技大学学报(自然科学版), 2015, 43(4): 79-83. |
WANG Chao, ZHENG Xiaolong, LI Liang, et al. Influence of Y+ on the calculation of submarine flow field characteristics of LES calculation accuracy[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(4): 79-83. | |
[13] |
CHAO C Y H, WAN M P. A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach[J]. Indoor Air, 2006, 16(4): 296-312.
pmid: 16842610 |
[14] |
RILEY E C, MURPHY G R, RILEY R L. Airborne spread of measles in a suburban elementary school[J]. American Journal of Epidemiology, 1978, 107(5): 421-432.
pmid: 665658 |
[15] |
SZE TO G N, CHAO C Y H. Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases[J]. Indoor Air, 2010, 20(1): 2-16.
doi: 10.1111/j.1600-0668.2009.00621.x pmid: 19874402 |
[16] | 季已辰. 室内流场和呼吸状态对呼吸道传染病传播过程影响的CFD模拟研究[D]. 南京: 东南大学, 2018. |
JI Yichen. CFD simulation on the effects of indoor airflow pattern and breathing pattern on the airborne transmission of respiratory infection[D]. Nanjing: Southeast University, 2018. | |
[17] | GUPTA J K. Respiratory exhalation/inhalation models and prediction of airborne infection risk in an aircraft cabin[D]. West Lafayette, USA: Purdue University, 2010. |
[18] |
AGRAWAL A, BHARDWAJ R. Reducing chances of COVID-19 infection by a cough cloud in a closed space[J]. Physics of Fluids, 2020, 32(10): 101704.
doi: 10.1063/5.0029186 URL |
[19] | 吴家麟, 翁文国. 新冠肺炎病毒颗粒在空调大巴中的传播与乘客感染风险[J]. 清华大学学报(自然科学版), 2021, 61(2): 89-95. |
WU Jialin, WENG Wenguo. Transmission of COVID-19 viral particles and the risk of infection among passengers in air-conditioned buses[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(2): 89-95. | |
[20] | 唐江明, 谷正气, 莫志姣, 等. 汽车空调送风格栅优化与乘员热舒适性改进[J]. 合肥工业大学学报(自然科学版), 2016, 39(3): 309-313. |
TANG Jiangming, GU Zhengqi, MO Zhijiao, et al. Optimization of vehicle air-conditioning grilles and the improvement of passenger thermal comfort[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(3): 309-313. | |
[21] | 交通运输部. 营运客车类型划分及等级评定: JT/T 325—2018[S]. 北京: 人民交通出版社, 2018. |
Ministry of Transport. Type dividing and class rating for commercial motor-vehicles of passenger transport: JT/T 325—2018[S]. Beijing: China Communications Press, 2018. | |
[22] |
LIU L, WEI J, LI Y, et al. Evaporation and dispersion of respiratory droplets from coughing[J]. Indoor Air, 2017, 27(1): 179-190.
doi: 10.1111/ina.12297 pmid: 26945674 |
[1] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[2] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[3] | 张宇, 王晓亮. 基于径向点插值方法的柔性螺旋桨气动弹性模拟[J]. 上海交通大学学报, 2020, 54(9): 924-934. |
[4] | 王瑞, 肖瑶, 顾汉洋, 叶亚楠. 螺旋管内单相流动周向非均匀传热现象的数值模拟[J]. 上海交通大学学报, 2020, 54(7): 688-696. |
[5] | . 半潜式钻井平台风载特征及影响因素分析[J]. 海洋工程装备与技术, 2019, 6(3): 548-. |
[6] | 郁程,董小倩,杨晨俊. 侧推器体积力模型及其应用[J]. 上海交通大学学报(自然版), 2018, 52(3): 291-296. |
[7] | 李懿霖,宋保维. 空化器直径对超空泡航行器空泡性能的影响[J]. 上海交通大学学报(自然版), 2017, 51(12): 1488-1492. |
[8] | 米百刚,詹浩. 先进飞行器动导数数值模拟新方法[J]. 上海交通大学学报(自然版), 2016, 50(04): 619-624. |
[9] | 刘晗a,马宁a,b*,邵闯a,顾解忡a,b. 限宽水域中船舶平面运动机构试验及水动力导数数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 115-122. |
[10] | 刘承江1,王永生1,古成中2. 船-泵相互作用对喷水推进器推进性能的影响[J]. 上海交通大学学报(自然版), 2016, 50(01): 91-97. |
[11] | 周振龙,朱锡,张帅. 螺旋桨CFD不确定度及叶形对桨叶变形的影响[J]. 上海交通大学学报(自然版), 2014, 48(1): 74-80. |
[12] | 刘强,谢伟,邱辽原,解学参. 桌面计算机上利用格子Boltzmann方法的GPU计算[J]. 上海交通大学学报(自然版), 2014, 48(09): 1329-1333. |
[13] | 田文龙,宋保维,毛昭勇. 水下航行器海流发电装置叶轮的数值仿真[J]. 上海交通大学学报(自然版), 2013, 47(08): 1306-1311. |
[14] | 蒋兰芳a,刘红b,鲁聪达b,牟介刚b,郭超b. 船用柴油机阻燃式防爆阀的压力降分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 889-893. |
[15] | 潘光1,胡斌1,2,王鹏1,杨智栋1,王一云1. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||