上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1397-1408.doi: 10.16183/j.cnki.jsjtu.2021.084
收稿日期:
2021-03-18
出版日期:
2022-10-28
发布日期:
2022-11-03
通讯作者:
李元
E-mail:li-yuan@mail.tsinghua.edu.cn
作者简介:
郭金玉(1975-),女,山东省聊城市人,博士,从事工业过程的故障检测与诊断研究.
基金资助:
GUO Jinyu, LI Wentao, LI Yuan()
Received:
2021-03-18
Online:
2022-10-28
Published:
2022-11-03
Contact:
LI Yuan
E-mail:li-yuan@mail.tsinghua.edu.cn
摘要:
对于动态系统,传统的核主元分析(KPCA)方法处理的效果不理想.滑动窗口核主元分析方法能适应动态系统的正常参数漂移,但是该方法处理大量的样本时需要较长的运算时间.因此,提出一种在线压缩核主元分析的自适应过程监控方法.该方法在大量的样本中选定较小的训练集作为初始压缩集进行建模,对在线实时采集的数据进行分析,判断新的样本是否正常.若为正常样本,判断该样本是否加入压缩集中,在加入压缩集的同时自动更新在线KPCA模型.将该方法应用到数值例子和田纳西-伊斯曼(TE)过程,仿真结果验证了该方法的有效性.
中图分类号:
郭金玉, 李文涛, 李元. 在线压缩核主元分析的自适应过程监控[J]. 上海交通大学学报, 2022, 56(10): 1397-1408.
GUO Jinyu, LI Wentao, LI Yuan. Adaptive Process Monitoring of Online Reduced Kernel Principal Component Analysis[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1397-1408.
表2
TE 过程的测量变量和控制变量
变量 | 变量描述 | 变量 | 变量描述 | 变量 | 变量描述 |
---|---|---|---|---|---|
1 | A进料 | 19 | 汽提器上部蒸汽流量 | 37 | 流11中D |
2 | D进料 | 20 | 压缩机功率 | 38 | 流11中E |
3 | E进料 | 21 | 反应器冷却水出口温度 | 39 | 流11中F |
4 | 总进料 | 22 | 分离器冷却水出口温度 | 40 | 流11中G |
5 | 再循环流量 | 23 | 流6中A | 41 | 流11中H |
6 | 反应器进料速度 | 24 | 流6中B | 42 | D进料量 |
7 | 反应器压力 | 25 | 流6中C | 43 | E进料量 |
8 | 反应器等级 | 26 | 流6中D | 44 | A进料量 |
9 | 反应器温度 | 27 | 流6中E | 45 | 总进料量 |
10 | 排放速度 | 28 | 流6中F | 46 | 压缩机再循环阀 |
11 | 产品分离器温度 | 29 | 流9中A | 47 | 排放阀 |
12 | 产品分离器液位 | 30 | 流9中B | 48 | 分离器灌液流量 |
13 | 产品分离器压力 | 31 | 流9中C | 49 | 汽提器液体产品流量 |
14 | 产品分离器塔底流量 | 32 | 流9中D | 50 | 汽提器蒸汽阀 |
15 | 汽提器等级 | 33 | 流9中E | 51 | 反应器冷却水流量 |
16 | 汽提器压力 | 34 | 流9中F | 52 | 冷凝器冷却水流量 |
17 | 汽提器塔底流量 | 35 | 流9中G | 53 | 搅拌速度 |
18 | 汽提器温度 | 36 | 流9中H |
表4
6种方法对TE过程的检测结果对比
检测 指标 | KPCA | 压缩KPCA | 递归KPCA | MWKPCA | VMWKPCA | ORKPCA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
故障2 | 故障20 | 故障2 | 故障20 | 故障2 | 故障20 | 故障2 | 故障20 | 故障2 | 故障20 | 故障2 | 故障20 | |||||||
FAR/% | 3.75 | 0 | 8.25 | 0.63 | 0.63 | 2.50 | 1.25 | 4.38 | 1.88 | 3.75 | 0 | 3.75 | ||||||
FDR/% | 98.38 | 38.63 | 95.88 | 39.38 | 98.75 | 88.00 | 97.65 | 85.13 | 98.75 | 96.38 | 98.75 | 97.13 | ||||||
ET/s | 2.34 | 2.29 | 0.17 | 0.13 | 5.51 | 7.13 | 3.09 | 4.74 | 4.18 | 3.05 | 0.91 | 0.56 |
[1] |
CHO J H, LEE J M, CHOI S W, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60(1): 279-288.
doi: 10.1016/j.ces.2004.08.007 URL |
[2] | WANG G, YIN S. Quality-related fault detection approach based on orthogonal signal correction and modified PLS[J]. IEEE Transactions on Industrial Informatics, 2017, 11 (2): 398-405. |
[3] |
CHENG C Y, HSU C C, CHEN M C. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes[J]. Industrial & Engineering Chemistry Research, 2011, 49(5): 2254-2262.
doi: 10.1021/ie900521b URL |
[4] |
AMAR M, GONDAL I, WILSON C. Vibration spectrum imaging: A novel bearing fault classification approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502.
doi: 10.1109/TIE.2014.2327555 URL |
[5] |
COSTA J A, HERO A O. Geodesic entropic graphs for dimension and entropy estimation in manifold learning[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2210-2221.
doi: 10.1109/TSP.2004.831130 URL |
[6] |
ZHU J L, GE Z Q, SONG Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1877-1885.
doi: 10.1109/TII.2017.2658732 URL |
[7] |
PENG K, ZHANG K, LI G. Online contribution rate based fault diagnosis for nonlinear industrial processes[J]. Acta Automatica Sinica, 2014, 40 (3): 423-430.
doi: 10.1016/S1874-1029(14)60005-7 URL |
[8] | 张成, 郭青秀, 李元, 等. 基于主元分析得分重构差分的故障检测策略[J]. 控制理论与应用, 2019, 36(5): 774-782. |
ZHANG Cheng, GUO Qingxiu, LI Yuan, et al. Fault detection strategy based on difference of score reconstruction associated with principal component analysis[J]. Control Theory & Applications, 2019, 36(5): 774-782. | |
[9] |
KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196.
doi: 10.1016/0169-7439(95)00076-3 URL |
[10] |
LI W, YUE H H, VALLE C S, et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control, 2000, 10(5): 471-486.
doi: 10.1016/S0959-1524(00)00022-6 URL |
[11] |
XIAO W, HUANG X, HE F, et al. Online robust principal component analysis with change point detection[J]. IEEE Transactions on Multimedia, 2020, 22(1): 59-68.
doi: 10.1109/TMM.2019.2923097 URL |
[12] | CHOI S W, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2005, 75(1): 55-67. |
[13] | 刘春燕, 于春梅. 基于改进核主元分析的TE故障诊断[J]. 计算机测量与控制, 2016, 24 (10): 36-41. |
LIU Chunyan, YU Chunmei. TE fault diagnosis based on improved kernel principal component analysis[J]. Computer Measurement & Control, 2016, 24 (10): 36-41. | |
[14] | GUO J, QI L, LI Y. Fault detection of batch process using dynamic multi-way orthogonal locality preserving projections[J]. Journal of Computational Information Systems, 2015, 11(2): 577-586. |
[15] |
HE F, WANG C, FAN S K S. Nonlinear fault detection of batch processes based on functional kernel locality preserving projections[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 183: 79-89.
doi: 10.1016/j.chemolab.2018.10.010 URL |
[16] | CHANG P, WANG P, GAO X J. Batch process monitoring for microbial fermentation based on multi-way kernel entropy component analysis[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 395-399. |
[17] |
YANG Y H, LI X L, LIU X Z, et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147(5): 395-402.
doi: 10.1016/j.neucom.2014.06.045 URL |
[18] |
SANG W C, LEE I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA[J]. Chemical Engineering Science, 2004, 59(24): 5897-5908.
doi: 10.1016/j.ces.2004.07.019 URL |
[19] | 谢磊, 王树青. 递归核PCA及其在非线性过程自适应监控中的应用[J]. 化工学报, 2007, 58(7): 1776-1782. |
XIE Lei, WANG Shuqing. Recursive kernel PCA and its application in adaptive monitoring of nonlinear processes[J]. CIESC Journal, 2007, 58(7): 1776-1782. | |
[20] | LIU X, KRUGER U, LITTLER T, et al. Moving window kernel PCA for adaptive monitoring of nonlinear processes[J]. Chemometrics & Intelligent Laboratory Systems, 2009, 96(2): 132-143. |
[21] | CHOUAIB C, MOHAMED-FAOUZI H, MESSAOUD D. New adaptive kernel principal component analysis for nonlinear dynamic process monitoring[J]. Applied Mathematics & Information Sciences, 2015, 9(4): 1833-1845. |
[22] |
FAZAI R, TAOUALI O, HARKAT M F, et al. A new fault detection method for nonlinear process monitoring[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(9/10/11/12): 3425-3436.
doi: 10.1007/s00170-016-8745-7 URL |
[23] |
YANG G, GU X. Fault diagnosis of complex chemical processes based on enhanced naive bayesian method[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4649-4658.
doi: 10.1109/TIM.2019.2954151 URL |
[24] |
LEE J M, LEE I B, YOO C K. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004, 28 (9): 1837-1840.
doi: 10.1016/j.compchemeng.2004.02.036 URL |
[25] |
JAFFEL I, TAOUALI O, HARKAT M F, et al. Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(9/10/11/12): 3265-3279.
doi: 10.1007/s00170-016-8987-4 URL |
[26] |
HAMROUNI I, LAHDHIRI H, ABDELLAFOU K B, et al. Fault detection of uncertain nonlinear process using reduced interval kernel principal component analysis (RIKPCA)[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(9/10): 4567-4576.
doi: 10.1007/s00170-019-04889-3 URL |
[27] |
HONEINE P. Approximation errors of online sparsification criteria[J]. IEEE Transactions on Signal Process, 2015, 63 (17): 4700-4709.
doi: 10.1109/TSP.2015.2442960 URL |
[28] |
ISSAM B K, MOHAMED L, CLAUS W. Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring[J]. Computers & Industrial Engineering, 2011, 61(3): 437-446.
doi: 10.1016/j.cie.2011.02.014 URL |
[29] |
DOWNS J, VOGEL A. A plant wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255.
doi: 10.1016/0098-1354(93)80018-I URL |
[30] | 郭金玉, 王哲, 李元. 基于核熵独立成分分析的故障检测方法[J]. 化工学报, 2022, 73(8): 3647-3658. |
GUO Jinyu, WANG Zhe, LI Yuan. Fault detection method based on kernel entropy independent component analysis[J]. CIESC Journal, 2022, 73(8): 3647-3658. | |
[31] |
ZHONG K, HAN M, QIU T, et al. Fault diagnosis of complex processes using sparse kernel local fisher discriminant analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1581-1591.
doi: 10.1109/TNNLS.2019.2920903 pmid: 31265419 |
[32] | DENG X, TIAN X, CHEN S, et al. Nonlinear process fault diagnosis based on serial principal component analysis[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(3): 560-572. |
[33] | 林茂, 李颖晖, 朱喜华, 等. 基于改进核主元分析法的三电平逆变器故障检测[J]. 电网技术, 2016, 40(3): 972-977. |
LIN Mao, LI Yinghui, ZHU Xihua, et al. Fault detection for three-level inverter based on improved kernel principal component analysis method[J]. Power System Technology, 2016, 40(3): 972-977. |
[1] | 邱寅祺, 付文龙, 潘聪, 卢宏林, 归一数. 基于文件交换的点对点有序可靠通信链路设计方法[J]. 上海交通大学学报, 2021, 55(S2): 82-85. |
[2] | 杨擎宇, 宋泉宏, 魏志飞, 顾一凡. 基于引导滤波权重与显著信息优化的红外与可见光图像融合[J]. 空天防御, 2021, 4(4): 113-118. |
[3] | 赵小强, 牟淼. 基于GSFA-GNPE的动态-静态联合指标间歇过程监控[J]. 上海交通大学学报, 2021, 55(11): 1417-1428. |
[4] | 郭红杰1,徐春玲2,侍洪波1. 基于局部邻域标准化策略的多工况过程故障检测[J]. 上海交通大学学报(自然版), 2015, 49(06): 868-875. |
[5] | 张欢欢. 海洋石油平台钢结构焊接质量控制[J]. 海洋工程装备与技术, 2014, 1(2): 174-176. |
[6] | 杨庆,陈桂明,刘鲭洁,何庆飞. 基于测地线距离的核主元分析在齿轮泵故障识别中应用[J]. 上海交通大学学报(自然版), 2011, 45(11): 1632-1636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||