上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (9): 1049-1057.doi: 10.16183/j.cnki.jsjtu.2021.009
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“能源与动力工程”专题
• • 下一篇
收稿日期:
2021-01-11
出版日期:
2021-09-28
发布日期:
2021-10-08
通讯作者:
杨帆
E-mail:fanyang_0123@sjtu.edu.cn
作者简介:
胡桓铭(1994-),男,河南省郑州市人,硕士生,从事钙钛矿氧化物的电催化性能研究.
基金资助:
HU Huanminga, YANG Fanb(), ZHANG Junliangb
Received:
2021-01-11
Online:
2021-09-28
Published:
2021-10-08
Contact:
YANG Fan
E-mail:fanyang_0123@sjtu.edu.cn
摘要:
为优化具有A位镧缺失的铁酸镧(La0.95FeO3-δ)钙钛矿的氧还原反应(ORR)和氧析出反应(OER)双功能电催化性能,研究La0.95FeO3-δ/C复合电极中碳的形态、电极浆料制备方法和催化剂载量对双功能电催化性能的影响,并分析其影响机理.结果表明:当La0.95FeO3-δ与导电碳形成复合电极时,ORR和OER催化活性显著提高;La0.95FeO3-δ/C复合电极的电催化性能与碳的形态以及电极浆料制备方法密切相关,在超声分散-球磨-超声分散的最佳浆料制备方法下,当以EC600JD为导电碳,La0.95FeO3-δ与EC600JD的载量分别为0.6 mg/cm2与0.12 mg/cm2时,ORR和OER催化活性最佳.经过工艺优化的La0.95FeO3-δ/C复合电极具有优异的双功能电催化性能,且其制备简单、成本低,有望在锂氧电池等器件中得到应用.
中图分类号:
胡桓铭, 杨帆, 章俊良. La0.95FeO3-δ/C复合电极制备工艺对氧还原和氧析出催化性能的影响[J]. 上海交通大学学报, 2021, 55(9): 1049-1057.
HU Huanming, YANG Fan, ZHANG Junliang. Effect of Preparation Process of La0.95FeO3-δ/C Composite Electrode on Preparation and Bifunctional Electrocatalytic Properties[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1049-1057.
表5
不同活性材料的双功能电催化性能指标
活性材料 | φORR | ηORR | φOER | ηOER | Δφ |
---|---|---|---|---|---|
La0.95FeO3-δ (本文) | 0.75 | 0.48 | 1.76 | 0.53 | 1.01 |
La0.95Fe | 0.58 | 0.65 | 1.64 | 0.41 | 1.06 |
磷掺杂LaFe | 0.72 | 0.51 | 1.69 | 0.46 | 0.97 |
LaFeO3-x纳米片[ | 0.57 | 0.66 | 1.78 | 0.55 | 1.21 |
La0.58Sr0.4Co0.5Fe0.5 | 0.67 | 0.56 | 1.72 | 0.49 | 1.05 |
Pt/C[ | 0.97 | 0.26 | 2.19 | 0.96 | 1.22 |
| 0.38 | 0.85 | 1.70 | 0.47 | 1.32 |
| 0.54 | 0.69 | 1.64 | 0.41 | 1.10 |
[1] |
GRIMAUD A, DIAZ-MORALES O, HAN B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nature Chemistry, 2017, 9(5):457-465.
doi: 10.1038/nchem.2695 URL |
[2] |
GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2):9-35.
doi: 10.1016/j.apcatb.2004.06.021 URL |
[3] |
TRASATTI S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochimica Acta, 1984, 29(11):1503-1512.
doi: 10.1016/0013-4686(84)85004-5 URL |
[4] |
GNANAMUTHU D S, PETROCELLI J V. A gene-ralized expression for the tafel slope and the kinetics of oxygen reduction on noble metals and alloys[J]. Journal of the Electrochemical Society, 1967, 114(10):1036.
doi: 10.1149/1.2424180 URL |
[5] | JI Q Q, BI L, ZHANG J T, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction[J]. Energy & Environmental Science, 2020, 13(5):1408-1428. |
[6] |
ZHU Y L, ZHOU W, SHAO Z P. Perovskite/carbon composites: Applications in oxygen electrocatalysis[J]. Small, 2017, 13(12):1603793.
doi: 10.1002/smll.v13.12 URL |
[7] |
SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7):546-550.
doi: 10.1038/nchem.1069 URL |
[8] |
SUNTIVICH J, MAY K J, GASTEIGER H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061):1383-1385.
doi: 10.1126/science.1212858 URL |
[9] | MEFFORD J T, RONG X, ABAKUMOV A M, et al. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nature Communications, 2016, 7(1):1-11. |
[10] | XU J J, WANG Z L, XU D, et al. 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance[J]. Energy & Environmental Science, 2014, 7(7):2213. |
[11] | 张晓茹, 许跃峰, 沈守宇, 等. 锂氧电池双功能还原石墨烯-LaFeO3复合纳米催化剂的制备及性能[J]. 物理化学学报, 2017, 33(11):2237-2244. |
ZHANG Xiaoru, XU Yuefeng, SHEN Shouyu, et al. Reduced graphene oxide-LaFeO3 composite nanomaterials as bifunctional catalyst for rechargeable lithium-oxygen batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(11):2237-2244. | |
[12] |
ZHU Y L, ZHOU W, YU J, et al. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions[J]. Chemistry of Materials, 2016, 28(6):1691-1697.
doi: 10.1021/acs.chemmater.5b04457 URL |
[13] |
LENG J, LI S, WANG Z S, et al. Synjournal of ultrafine lanthanum ferrite (LaFeO3) fibers via electrospinning[J]. Materials Letters, 2010, 64(17):1912-1914.
doi: 10.1016/j.matlet.2010.06.005 URL |
[14] | XU J J, WANG Z L, XU D, et al. 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance[J]. Energy & Environmental Science, 2014, 7(7):2213. |
[15] |
GAO R, CHEN Q Z, ZHANG W J, et al. Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery[J]. Journal of Catalysis, 2020, 384:199-207.
doi: 10.1016/j.jcat.2020.02.024 URL |
[16] |
ZHU Y L, ZHOU W, YU J, et al. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions[J]. Chemistry of Materials, 2016, 28(6):1691-1697.
doi: 10.1021/acs.chemmater.5b04457 URL |
[17] |
LI Z S, LÜ L, WANG J S, et al. Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions[J]. Nano Energy, 2018, 47:199-209.
doi: 10.1016/j.nanoen.2018.02.051 URL |
[18] |
KRIEG A S, KING J A, JASZCZAK D C, et al. Tensile and conductivity properties of epoxy composites containing carbon black and graphene nanoplatelets[J]. Journal of Composite Materials, 2018, 52(28):3909-3918.
doi: 10.1177/0021998318771460 URL |
[19] |
PARK H W, LEE D U, ZAMANI P, et al. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries[J]. Nano Energy, 2014, 10:192-200.
doi: 10.1016/j.nanoen.2014.09.009 URL |
[20] |
RINCÓN R A, MASA J, MEHRPOUR S, et al. Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe-Nx/C groups[J]. Chemical Communications, 2014, 50(94):14760-14762.
doi: 10.1039/C4CC06446A URL |
[1] | 周苏,姜缜,DE LILE J R. 基于密度泛函理论的过渡金属酞菁配合物氧还原反应催化能力[J]. 上海交通大学学报(自然版), 2017, 51(12): 1422-1427. |
[2] | 孙晓文,杨鹏,张文光. 掺杂磺酸聚苯胺/碳纳米管复合膜电极制备及其应用[J]. 上海交通大学学报(自然版), 2016, 50(02): 228-234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||