上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (8): 934-941.doi: 10.16183/j.cnki.jsjtu.2020.128
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“工程力学”专题
收稿日期:
2020-05-06
出版日期:
2021-08-28
发布日期:
2021-08-31
通讯作者:
黄闯
E-mail:huangchuang@nwpu.edu.cn
作者简介:
许海雨(1991-),男,黑龙江省大庆市人,博士生,主要从事通气超空泡数值模拟研究
基金资助:
XU Haiyu, LUO Kai, HUANG Chuang(), ZUO Zhenhao, GU Jianxiao
Received:
2020-05-06
Online:
2021-08-28
Published:
2021-08-31
Contact:
HUANG Chuang
E-mail:huangchuang@nwpu.edu.cn
摘要:
为了研究通气超空泡初生及发展过程中空泡形态及泄气模式的演变特性,采用分相流模型和SST湍流模型,考虑通气压缩性和重力效应,建立了通气超空化三维数值计算模型,并通过试验数据进行了校核和验证,研究了在通气率和弗劳德数大范围变化下的通气超空泡生成及发展过程.结果表明:回射流模式超空泡发展过程非常不稳定,空泡初生时伴随空泡的断裂及分离,空泡发展过程中存在气/水混合物回流现象,超空泡形态难以预估.双涡管模式超空泡先以回射流模式发展,当超空泡充分发展后,空泡闭合模式转变为双涡管方式,空泡形态及泡内压力相对比较稳定.接近超空泡泄气转变临界时,超空泡闭合模式在双涡管和回射流之间相互转变,导致超空化流动及超空泡形态变化更加复杂.
中图分类号:
许海雨, 罗凯, 黄闯, 左振浩, 古鉴霄. 低弗劳德数通气超空泡初生及发展演变特性[J]. 上海交通大学学报, 2021, 55(8): 934-941.
XU Haiyu, LUO Kai, HUANG Chuang, ZUO Zhenhao, GU Jianxiao. Variation Characteristics of Formation and Development of Ventilated Supercavity at Low Froude Numbers[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 934-941.
[1] |
SHAO S Y, KARN A, AHN B K, et al. A compa-rative study of natural and ventilated supercavitation across two closed-wall water tunnel facilities[J]. Experimental Thermal and Fluid Science, 2017, 88:519-529.
doi: 10.1016/j.expthermflusci.2017.07.005 URL |
[2] |
KARN A, ARNDT R E A, HONG J R. An experimental investigation into supercavity closure mechanisms[J]. Journal of Fluid Mechanics, 2016, 789:259-284.
doi: 10.1017/jfm.2015.680 URL |
[3] |
KARN A, ARNDT R E A, HONG J R. Gas entrainment behaviors in the formation and collapse of a ventilated supercavity[J]. Experimental Thermal and Fluid Science, 2016, 79:294-300.
doi: 10.1016/j.expthermflusci.2016.08.003 URL |
[4] |
LEE S J, PAIK B G, KIM K Y, et al. On axial deformation of ventilated supercavities in closed-wall tunnel experiments[J]. Experimental Thermal and Fluid Science, 2018, 96:321-328.
doi: 10.1016/j.expthermflusci.2018.03.014 URL |
[5] | CAMPBEL I J, HILBORNE D V. Air entrainment behind artificially inflated cavity[C]//Proceedings of the Second Symposium on Naval Hydrodynamics. Washington, USA: The Office of Naval Research and the National Academy of Sciences, 1958. |
[6] | SKIDMORE G. The pulsation of ventilated supercavities[D]. USA: Pennsyvania State University, 2012. |
[7] |
KARN A, ARNDT R E A, HONG J R. Dependence of supercavity closure upon flow unsteadiness[J]. Experimental Thermal and Fluid Science, 2015, 68:493-498.
doi: 10.1016/j.expthermflusci.2015.06.011 URL |
[8] |
RASHIDI I, PASANDIDEH-FARD M, PASSANDIDEH-FARD M, et al. Numerical and experimental study of a ventilated supercavitating vehicle[J]. Journal of Fluids Engineering, 2014, 136(10):101301.
doi: 10.1115/1.4027383 URL |
[9] | 王志, 李鹏, 许统华, 等. 通气空泡内部流场结构实验研究[J]. 船舶力学, 2016, 20(11):1355-1360. |
WANG Zhi, LI Peng, XU Tonghua, et al. Experimental research of inner flow field structure for ventilated cavity[J]. Journal of Ship Mechanics, 2016, 20(11):1355-1360. | |
[10] |
WANG Z Y, HUANG B, WANG G Y, et al. Experimental and numerical investigation of ventilated cavitating flow with special emphasis on gas leakage behavior and re-entrant jet dynamics[J]. Ocean Engineering, 2015, 108:191-201.
doi: 10.1016/j.oceaneng.2015.07.063 URL |
[11] | 张孝石, 王聪, 魏英杰, 等. 航行体云状空泡稳定性通气控制[J]. 哈尔滨工业大学学报, 2017, 49(8):152-157. |
ZHANG Xiaoshi, WANG Cong, WEI Yingjie, et al. Gas control on the ventilated cavitation stability around an underwater vehicle[J]. Journal of Harbin Institute of Technology, 2017, 49(8):152-157. | |
[12] |
AHN B K, JEONG S W, KIM J H, et al. An experimental investigation of artificial supercavitation ge-nerated by air injection behind disk-shaped cavitators[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(2):227-237.
doi: 10.1016/j.ijnaoe.2016.10.006 URL |
[13] |
CAO L, KARN A, ARNDT R E A, et al. Numerical investigations of pressure distribution inside a ventilated supercavity[J]. Journal of Fluids Engineering, 2017, 139(2):021301.
doi: 10.1115/1.4035027 URL |
[14] | 邓飞, 熊伟, 周江磊, 等. 双圆盘空化器射弹通气超空泡形态特性实验研究[J]. 西北工业大学学报, 2019, 37(1):93-99. |
DENG Fei, XIONG Wei, ZHOU Jianglei, et al. Experimental study on morphological characteristics of ventilated supercavity of double disc cavitator projectile[J]. Journal of Northwestern Polytechnical University, 2019, 37(1):93-99.
doi: 10.1051/jnwpu/20193710093 URL |
|
[15] |
XIANG M, LI K, TU J Y, et al. Numerical investigation on the gas entrainment of ventilated partial cavity based on a multiscale modelling approach[J]. Applied Ocean Research, 2016, 60:84-93.
doi: 10.1016/j.apor.2016.08.003 URL |
[1] | 张晓嵩,万德成. 运动船舶周围为什么会出现大范围白色泡沫流动?[J]. 上海交通大学学报, 2021, 55(Sup.1): 65-66. |
[2] | 刘东喜1,唐文勇1,王晋1, 2,薛鸿祥1. 基于非均质多相流模型的液舱晃荡数值模拟[J]. 上海交通大学学报(自然版), 2017, 51(3): 283-. |
[3] | 陈彦君,李元阳,刘振华. 基于多相流模型的腔体内纳米流体自然对流换热数值模拟[J]. 上海交通大学学报(自然版), 2015, 49(05): 600-607. |
[4] | 周涛1,2,杨旭1,2,林达平1,2,樊昱楠1,汝小龙1. 湿度对矩形窄通道内细颗粒热泳沉积的影响[J]. 上海交通大学学报(自然版), 2015, 49(05): 718-724. |
[5] | 陈彦君,李元阳,刘振华. 基于多相流模型的纳米流体在水平细圆管内强制对流换热数值模拟[J]. 上海交通大学学报(自然版), 2014, 48(09): 1303-1308. |
[6] | 傅慧萍. 基于相群平衡模型的舰船气泡尾流数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(04): 538-543. |
[7] | 王新昶1,孙方宏1,孙乐申2,丁庆华2,彭东辉3. 高压差高固含量减压阀的仿真优化设计[J]. 上海交通大学学报(自然版), 2011, 45(11): 1597-1601. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||