上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (9): 953-960.doi: 10.16183/j.cnki.jsjtu.2020.154
收稿日期:
2020-05-26
出版日期:
2020-09-28
发布日期:
2020-10-10
作者简介:
彭聪(1988-),女, 江苏省泰州市人,教授,主要从事主动振动控制、智能控制和人工智能的计算机视觉研究.电话(Tel.):18551852606; E-mail: 基金资助:
PENG Cong(), LIU Bin, ZHOU Qian
Received:
2020-05-26
Online:
2020-09-28
Published:
2020-10-10
摘要:
为解决从复杂的信号环境下提取所需的信号,克服传统方式上信号获取与处理方法的不足和多源故障振动信号位置不确定等问题,针对机械转子的多源故障情况进行研究,提出一种基于机器视觉和盲源分离的旋转机械故障检测方法.首先介绍了基于机器视觉和盲源分离问题的数学原理,然后基于盲源信号分离方法和超定视觉盲源分离方法分析获取的高速视频,从而实现多源振动信号的分离与定位.最后,实验结果表明本文中提出的检测方法能够对旋转机械多源故障进行准确定位.该方法将机器视觉测量方法与盲源分离信号处理方法进行结合,实现了对多源故障有效分离识别.
中图分类号:
彭聪, 刘彬, 周乾. 基于机器视觉和盲源分离的机械故障检测[J]. 上海交通大学学报, 2020, 54(9): 953-960.
PENG Cong, LIU Bin, ZHOU Qian. Mechanical Fault Detection Based on Machine Vision and Blind Source Separation[J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 953-960.
[1] | 张津. 旋转机械振动信号故障诊断研究[J]. 装备机械, 2017(4):55-60. |
ZHANG Jin. Research on vibration signal fault diagnosis of rotating machinery[J]. Equipment Machine, 2017(4):55-60. | |
[2] | 蒋龙, 臧春艳, 胡学深, 等. 基于低频振动信号的GIL机械故障诊断[J]. 电力科学与技术学报, 2019,34(3):86-91. |
JIANG Long, ZANG Chunyan, HU Xueshen, et al. Research on the diagnosis of GIL mechanical fault by low frequency vibration signal[J]. Journal of Electric Power Science and Technology, 2019,34(3):86-91. | |
[3] | LI G Z, TANG G, WANG H Q, et al. Blind source separation of composite bearing vibration signals with low rank and sparse decomposition[J]. Measurement, 2019,145:323-334. |
[4] | XIAO Y Q, WANG H C. A two-step blind source extraction method and its application in fault diagnosis of rolling element bearing[J]. Journal of Mechanical Science and Technology, 2019,33(3):1141-1148. |
[5] | GHEMARI Z, SAAD S. Development of model and enhancement of measurement precision of sensor vibration[J]. IEEE Sensors Journal, 2012,12(12):3454-3459. |
[6] | 蒲锰, 苗启义. 基于机器视觉的矿井提升机PLC 实时故障诊断[J].可编程控制器与工厂自动化, 2012(7):90-92. |
PU Meng, MIAO Qiyi. Mine hoist PLC real-time fault diagnosis based on machine vision[J]. Programmable Logic Controller and Factory Automation, 2012(7):90-92. | |
[7] | 李双, 王仲生. 基于机器视觉的航空发动机转子裂纹故障识别系统[J]. 计算机测量与控制, 2009,17(4):631-632. |
LI Shuang, WANG Zhongsheng. Aero-engine rotor crack identification system based on machine vision[J]. Computational Measurement & Control, 2009,17(4):631-632. | |
[8] | 潘锋, 阎镭, 向桂山, 等. 基于机器视觉技术的气动系统状态监控与故障诊断[J]. 机床与液压, 2005,33(8):203-204. |
PAN Feng, YAN Lei, XIANG Guishan, et al. State monitoring and fault diagnosis for pneumatic system based on machine vision[J]. Machine Tool & Hydraulics, 2005,33(8):203-204. | |
[9] | WANG X X, GUO J, LU S L, et al. A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis[J]. Measurement Science & Technology, 2017,28(6):065012. |
[10] | YANG Y C, DORN C, MANCINI T, et al. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification[J]. Mechanical System and Signal Processing, 2017,85:567-590. |
[11] | JUN H, CHEN Y, ZHANG Q H, et al. Blind source separation method for bearing vibration signals[J]. IEEE Access, 2018(6):658-664. |
[12] | LU J T, CHENG W, CHU Y P, et al. Post-nonlinear blind source separation with kurtosis constraints using augmented Lagrangian particle swarm optimization and its application to mechanical systems[J]. Journal of Vibration and Control, 2019,25(16):2246-2260. |
[13] | 李振壁, 王康, 姜媛媛. 盲源分离技术研究与方法综述[J]. 科学技术与工程, 2017,17(14):141-147. |
LI Zhenbi, WANG Kang, JIANG Yuanyuan. Research and survey on methods of blind source separation technology[J]. Science Technology and Engineering, 2017,17(14):141-147. | |
[14] | GONG X F, LIN Q H, CONG F Y, et al. Double coupled canonical polyadic decomposition for joint bind source separation[J]. IEEE Transactions on Signal Processing, 2018,66(13):3475-3490. |
[15] | MOURAD N, REILLY J P, KIRUBARAJAN T. Majorization-minimization for blind source separation of sparse sources[J]. Signal Processsing, 2017,131:120-133. |
[16] | WANG R J, ZHAN Y J, ZHOU H F. A method of underdetermined blind source separation in time-domain[J]. International Journal of Electronics, 2012,99(4):543-555. |
[17] | MAGGIONI G M, KOCEVSKA S, GROVER M A, et al. Analysis of multicomponent ionic mixtures using blind source separation: A processing case study[J]. Industrial & Engineering Chemistry Research, 2019,58(50):22640-22651. |
[18] | EHSANDOUST B, BABAIE-ZADEH M, RIVET B, et al. Blind source separation in nonlinear mixtures: Separability and a basic algorithm[J]. IEEE Transactions on Signal Processing, 2017,65(16):4339-4352. |
[19] | ZHOU W L, CHELIDZE D. Blind source separation based vibration mode identification[J]. Mechanical Systems and Signal Processing, 2007,21(8):3072-3087. |
[20] | BREWICK P T, SMYTH A W. On the application of blind source separation for damping estimation of bridges under traffic loading[J]. Journal of Sound and Vibration, 2014,333(26):7333-7351. |
[21] | FORTUNA J, MARTINEZ A M. Rigid structure from motion from a blind source separation perspective[J]. International Journal of Computer Vision, 2010,88(3):404-424. |
[22] | CICHOCKI A. Blind signal processing methods for analyzing multichannel brain signals[J]. International Journal of Bioelectromagnitism, 2004,6(1):1-21. |
[23] | LU N Y, JIANG B, MENG X F, et al. Diagnosis, diagnosticability analysis, and test point design for multiple faults based on multisignal modeling and blind source separation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020,50(1):137-148. |
[24] | ZHOU B, CHEN C Z, ZHAO X G, et al. Separation for vibration and acoustic compound signals and multi-unit fault diagnosis[J]. Journal of Vibration, Measurement and Diagnosis, 2012,32(4):619-623. |
[25] | YI Z G, PAN N, GUO Y. Mechanical compound faults extraction based on improved frequency domain blind deconvolution algorithm[J]. Mechanical Systems and Signal Processing, 2018,113:180-188. |
[1] | 孙棪伊, 范文晶, 曾远帆, 干兴业, 汤日佳, 韩锐. 基于Harris角点检测的装填靶标识别方法[J]. 空天防御, 2022, 5(4): 87-91. |
[2] | 周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749. |
[3] | 牛牧, 许黎明, 赵达, 范帆. 基于工件轮廓图像的砂轮磨损在线检测方法[J]. 上海交通大学学报, 2021, 55(3): 221-228. |
[4] | 王旭烽, 汤日佳, 孙棪伊, 干兴业, 张玉鑫. 导弹自动装填技术研究综述[J]. 空天防御, 2021, 4(2): 34-. |
[5] | 汪韬,贡亮,张经纬,吴林立梓,马志宏,杨刚,毛雨晗,洪骏,刘成良. 基于自定义聚类的水稻剑叶夹角测量[J]. 上海交通大学学报(自然版), 2018, 52(8): 961-968. |
[6] | 薛梦霞,刘士荣,王坚. 基于机器视觉的动态多目标识别[J]. 上海交通大学学报(自然版), 2017, 51(6): 727-733. |
[7] | 白瑞峰, 房朝晖, 靳荔成, 于赫洋, 张拓迷. 融合机器视觉的工业机器人虚拟平台构建[J]. 实验室研究与探索, 2017, 36(5): 246-249. |
[8] | 闵永智1,肖本郁1,党建武1,殷超1,岳彪1,马宏锋2. 轨道扣件缺失的机器视觉快速检测方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1268-1272. |
[9] | 王秀平1,2,白瑞林1,刘子腾1. 由任意平行四边形确定摄像机内参数的方法[J]. 上海交通大学学报(自然版), 2015, 49(03): 366-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||