上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (6): 584-591.doi: 10.16183/j.cnki.jsjtu.2019.062
夏立a,邹早建a,b,袁帅a,曾智华a
出版日期:
2020-06-28
发布日期:
2020-07-03
通讯作者:
邹早建,男,教授,博士生导师,E-mail: zjzou@sjtu.edu.cn.
作者简介:
夏立 (1990-),男,浙江省舟山市人,博士生,研究方向为不确定度量化.
XIA Li a,ZOU Zaojian a,b,YUAN Shuai a,ZENG Zhihua a
Online:
2020-06-28
Published:
2020-07-03
摘要: 比较了计算流体动力学不确定度分析中的验证与确认方法和不确定度量化方法之间的区别.介绍了一种最新的不确定度量化方法——非侵入式混沌多项式法,并应用该方法和传统的蒙特卡洛法分别对二维随机阻曳流进行不确定度量化,其中蒙特卡洛法选用了随机采样法和拉丁超立方采样法两种方法.研究了当进出口压力为服从均匀分布的随机变量时所引起的流动的不确定性.研究结果表明,应用蒙特卡洛法进行不确定度量化时,随机采样法和拉丁超立方采样法效果差别不大;混沌多项式方法相较于蒙特卡洛法可以更高效地模拟不确定性在流场中的传播.
中图分类号:
夏立, 邹早建, 袁帅, 曾智华. 基于非侵入式混沌多项式法的随机阻曳流CFD模拟不确定度量化[J]. 上海交通大学学报, 2020, 54(6): 584-591.
XIA Li, ZOU Zaojian, YUAN Shuai, ZENG Zhihua. Uncertainty Quantification for CFD Simulation of Stochastic Drag Flow Based on Non-Intrusive Polynomial Chaos Method[J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 584-591.
[1]MARCELLO A, SPINELLA S, RINAUDO S. Stochastic response surface method and tolerance analysis in microelectronics[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(2): 314-327. [2]WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936. [3]GHANEM R G, SPANOS P D. Stochastic finite elements: A spectral approach[M]. New York: Springer-Verlag, 1991: 113-185. [4]XIU D, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. [5]XIU D, KARNIADAKIS G E. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(43): 4927-4948. [6]XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137-167. [7]LOEVEN G J A, WITTEVEEN J A S, BIJL H. Probabilistic collocation: An efficient non-intrusive approach for arbitrarily distributed parametric uncertainties[C]∥Proceedings of 45th Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2007: No.2007-317. [8]LOEVEN G J A. Efficient uncertainty quantification in computational fluid dynamics[D]. Delft: Delft University of Technology, 2010. [9]MARGHERI L, SAGAUT P. A hybrid anchored-ANOVA-POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations[J]. Journal of Computational Physics, 2016, 324: 137-173. [10]MATHELIN L, HUSSAINI M Y. Uncertainty quantification in CFD simulations: A stochastic spectral approach[M]. ARMFIELD S W, MORGAN P, SRINIVAS K. Computational Fluid Dynamics 2002. Berlin: Springer, 2003: 65-70. [11]MATHELIN L, HUSSAINI M Y, ZANG T A. Stochastic approaches to uncertainty quantification in CFD simulations[J]. Numerical Algorithms, 2005, 38(1-3): 209-236. [12]LACOR C, DINESCU C, HIRSCH C, et al. Implementation of intrusive polynomial chaos in CFD codes and application to 3D Navier-Stokes[M]. BIJL H, LUCOR D, MISHRA S, et al. Uncertainty Quantification in Computational Fluid Dynamics. Heidelberg: Springer, 2013: 193-223. [13]HOSDER S, WALTERS R, PEREZ R. A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[C]∥Proceedings of 44th Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2006: No.2006-891. [14]HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]∥Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Honolulu, Hawaii, USA: AIAA, 2007: No.2007-1939. [15]HOSDER S, WALTERS R. Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics[C]∥Proceedings of 48th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Honolulu, Hawaii, USA: AIAA, 2010: No.2010-129. [16]SALEHI S, RAISEE M, CERVANTES M J, et al. Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing[J]. Computers & Fluids, 2017, 154: 296-321. [17]SALEHI S, RAISEE M, CERVANTES M J, et al. The effects of inflow uncertainties on the characteristics of developing turbulent flow in rectangular pipe and asymmetric diffuser[J]. Journal of Fluids Engineering, 2017, 139(4): 041402. [18]WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Science China Technological Sciences, 2010, 53(10): 2853-2861. [19]HE W, DIEZ M, CAMPANA E F, et al. A one-dimensional polynomial chaos method in CFD-based uncertainty quantification for ship hydrodynamic performance[J]. Journal of Hydrodynamics, 2013, 25(5): 655-662. [20]DIEZ M, HE W, CAMPANA E F, et al. Uncertainty quantification of Delft catamaran resistance, sinkage and trim for variable Froude number and geometry using metamodels, quadrature and Karhunen-Loève expansion[J]. Journal of Marine Science and Technology, 2014, 19(2): 143-169. [21]STERN F, VOLPI S, GAUL N J, et al. Development and assessment of uncertainty quantification methods for ship hydrodynamics[C]∥Proceedings of 55th Aerospace Sciences Meeting. Grapevine, Texas, USA: AIAA, 2017: No.2017-1654. [22]毕超. 计算流体力学有限元方法及其编程详解[M]. 北京: 机械工业出版社, 2013: 37-72. BI Chao. Finite element method in computational fluid dynamics and its detailed programming[M]. Beijing: China Machine Press, 2013: 37-72. [23]CELIK I B, GHIA U, ROACHE P J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 0780011-0780014. |
[1] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[2] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[3] | 杨梦姚, 毛璐璐, 韩兆龙, 周岱, 雷航, 曹宇. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55(4): 347-356. |
[4] | 徐野, 熊鹰, 黄政. 双桨船螺旋桨空泡脉动压力的试验及数值研究[J]. 上海交通大学学报, 2020, 54(8): 831-838. |
[5] | 郭军,陈作钢,戴原星,陈建平. 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54(1): 1-9. |
[6] | 谢行,任慧龙,陶凯东,冯亿坤. 应用改进流体体积法的楔形体斜向入水研究[J]. 上海交通大学学报, 2020, 54(1): 20-27. |
[7] | 李亮,解茂昭,贾明,刘宏升. 超临界射流模型的构建及验证[J]. 上海交通大学学报(自然版), 2018, 52(9): 1058-1064. |
[8] | 张磊华a,姚振强a,b,沈洪a,b,成德a,薛亚波a. 环形流道内周向流对摩擦因子的修正公式[J]. 上海交通大学学报(自然版), 2017, 51(1): 46-. |
[9] | 冯松波a,邹早建a,b,邹璐a. KVLCC2船-舵系统斜航水动力数值计算[J]. 上海交通大学学报(自然版), 2015, 49(04): 470-474. |
[10] | 徐博1,张驰1,陈江平1,孙西辉2,马小魁2. 积液型两相流分配器的性能与优化[J]. 上海交通大学学报(自然版), 2015, 49(01): 91-95. |
[11] | 韩龙1,陈阳陵2,王福新1,程用胜1. 高海况机翼波浪地面效应数值模拟与分析[J]. 上海交通大学学报(自然版), 2014, 48(08): 1127-1133. |
[12] | 胡晓晨, 祁照岗, 殷礼鸣, 陈江平. 新型金属氢化物反应床传热性能分析[J]. 上海交通大学学报(自然版), 2012, 46(04): 530-535. |
[13] | 桂晓澜, 周岱, 李俊龙. 基于计算流体动力学法的风场模拟和流/固耦合问题[J]. 上海交通大学学报(自然版), 2012, 46(01): 158-166. |
[14] | 王新昶1,孙方宏1,孙乐申2,丁庆华2,彭东辉3. 高压差高固含量减压阀的仿真优化设计[J]. 上海交通大学学报(自然版), 2011, 45(11): 1597-1601. |
[15] | 叶骞, 吴琼. 基于CFD的旋流非接触吸盘仿真与优化[J]. 上海交通大学学报(自然版), 2011, 45(09): 1256-1262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||