[1]KENNEDY M P, KOLUMBAN G, KIS G. Performance evaluation of FM-DCSK modulation in multipath environments[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1702-1711.
[2]KADDOUM G, TRAN H V, KONG L, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431-433.
[3]段俊毅, 蒋国平, 杨华. 无信号内干扰的相关延迟键控混沌通信方案[J]. 电子与信息学报, 2016, 38(3): 681-687.
DUAN Junyi, JIANG Guoping, YANG Hua. Correlation delay shift keying chaotic communication scheme with no intrasignal interference[J]. Journal of Electronics and Information Technology, 2016, 38(3): 681-687.
[4]KADDOUM G, SOUJERI E, NIJSURE Y. Design of a short reference noncoherent chaos-based communication systems[J]. IEEE Transactions on Communications, 2016, 64(2): 680-689.
[5]KADDOUM G. Design and performance analysis of a multiuser OFDM based differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2016, 64(1): 249-260.
[6]蒋国平, 杨华, 段俊毅. 混沌数字调制技术研究进展[J]. 南京邮电大学学报(自然科学版), 2016, 36(1): 1-7.
JIANG Guoping, YANG Hua, DUAN Junyi. Research progress on chaotic digital modulation techno-logies[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2016, 36(1): 1-7.
[7]KADDOUM G, SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(7): 648-652.
[8]CHEN C C, YAO K. Stochastic-calculus-based numerical evaluation and performance analysis of chaotic communication systems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1663-1672.
[9]DAWA M, KADDOUM G, SATTAR Z. A generalized lower bound on the bit error rate of DCSK systems over multi-path Rayleigh fading channels[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(3): 321-325.
[10]SUSHCHIK M, TSIMRING L S, VOLKOVSKII A R, et al. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1684-1691.
[11]YANG H, JIANG G P. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncohe-rent communication[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(5): 312-316.
[12]YANG H, JIANG G P. Reference-modulated DCSK: A novel chaotic communication scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(4): 232-236.
[13]KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: an improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(9): 901-905.
[14]LAU F C, YIP M M, TEE C K, et al. A multiple-access technique for differential chaos shift keying[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(1): 96-104.
[15]张刚, 孟维, 张天骐. 一种改进型多用户正交差分混沌键控[J]. 电子技术应用, 2015, 41(12): 76-78.
ZHANG Gang, MENG Wei, ZHANG Tianqi. An improved multiple access orthogonal differential chaos shift keying[J]. Application of Electronic Technique, 2015, 41(12): 76-78.
[16]MANDAL S, BANERJEE S. Analysis and CMOS implementation of a chaos-based communication system[J]. IEEE Transactions on Circuits Systems I: Regular Papers, 2004, 51(9): 1708-1722.
[17]CHERNOV N I. Limit theorems and Markov approximations for chaotic dynamical systems[J]. Probability Theory and Related Fields, 1995, 101(3): 321-362. |