上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (12): 1278-1290.doi: 10.16183/j.cnki.jsjtu.2019.146
收稿日期:
2019-05-27
出版日期:
2020-12-01
发布日期:
2020-12-31
通讯作者:
陆志强
E-mail:zhiqianglu@tongji.edu.cn
作者简介:
方佳(1996-),女,江苏省常州市人,硕士生,研究方向为生产调度建模与优化.
基金资助:
Received:
2019-05-27
Online:
2020-12-01
Published:
2020-12-31
Contact:
LU Zhiqiang
E-mail:zhiqianglu@tongji.edu.cn
摘要:
为了解决不确定环境下的飞机移动装配线调度问题,提出了依赖感知器的果蝇优化算法(PDFOA),生成具有较强鲁棒性的模板装配计划.PDFOA在借鉴果蝇优化算法的基础上设计了窄域嗅觉搜索操作与窄域视觉搜索操作,对邻域解进行高效的搜索与筛选.同时,为了加强算法的全局搜索能力,设置了果蝇“知识记忆库”记录寻优过程.最后,在各作业规模的算例下通过抽样仿真实验将PDFOA与禁忌搜索、遗传算法以及免疫粒子群优化算法进行对比,验证了PDFOA的有效性.
中图分类号:
方佳, 陆志强. 考虑设备故障的鲁棒调度计划模板的建模优化[J]. 上海交通大学学报, 2020, 54(12): 1278-1290.
FANG Jia, LU Zhiqiang. Modeling and Optimization of Robust Scheduling Template Considering Equipment Failure[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1278-1290.
表2
大规模任务实验结果对比
作业规模 | 实验组别 | PDFOA | TS | GAP/% | R | ||
---|---|---|---|---|---|---|---|
Z | tal/s | Z | tal/s | ||||
60 | 1 | 9 667.531 | 71.79 | 9 943.686 | 150.70 | 2.86 | 0.7 |
2 | 9 551.523 | 67.62 | 9 831.644 | 137.70 | 2.93 | 0.6 | |
3 | 9 503.118 | 61.37 | 10 215.929 | 172.60 | 7.50 | 0.5 | |
4 | 9 724.105 | 66.95 | 10 082.333 | 175.20 | 3.68 | 0.6 | |
5 | 9 472.344 | 64.60 | 9 658.903 | 182.00 | 1.97 | 0.6 | |
Ave60 | — | 9 583.724 | 66.47 | 9 946.499 | 163.64 | 3.79 | — |
90 | 1 | 9 095.379 | 104.18 | 10 301.729 | 480.20 | 13.26 | 0.7 |
2 | 9 589.933 | 94.70 | 9 793.311 | 457.90 | 2.12 | 0.7 | |
3 | 9 369.342 | 104.30 | 10 238.112 | 511.80 | 9.27 | 0.7 | |
4 | 9 777.214 | 96.57 | 10 317.234 | 474.10 | 5.52 | 0.7 | |
5 | 9 387.405 | 94.13 | 10 420.824 | 484.70 | 11.01 | 0.7 | |
Ave90 | — | 9 443.855 | 98.78 | 10 214.242 | 481.74 | 8.16 | — |
120 | 1 | 10 591.995 | 171.44 | 11 060.492 | 1 245.05 | 4.42 | 0.6 |
2 | 9 508.043 | 179.99 | 10 999.779 | 1 305.17 | 15.69 | 0.8 | |
3 | 10 152.130 | 181.57 | 11 028.171 | 1 245.05 | 8.63 | 0.7 | |
4 | 10 056.386 | 174.82 | 10 823.794 | 1 542.50 | 7.63 | 0.6 | |
5 | 9 987.023 | 171.44 | 10 669.859 | 1 343.85 | 6.84 | 0.5 | |
Ave120 | — | 10 059.120 | 175.85 | 10 916.419 | 1 336.32 | 8.52 | — |
表4
PDFOA与GA、IPSO算法在不同作业规模算例下的对比结果
作业规模 | 组别 | PDFOA | GA | IPSO | GAP | R | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Z | tal/s | tal/s | Z | tal/s | GAP1/% | GAP2/% | R1 | R2 | |||
30 | 1 | 3 059.399 | 28.015 | 4 069.015 | 4.603 | 4 138.863 | 3.945 | 33.00 | 35.28 | 1.0 | 1.0 |
2 | 3 151.645 | 27.220 | 4 107.190 | 4.065 | 4 138.760 | 4.489 | 30.32 | 31.32 | 1.0 | 1.0 | |
3 | 3 167.558 | 26.129 | 3 985.915 | 4.342 | 4 139.131 | 4.508 | 25.84 | 30.67 | 1.0 | 1.0 | |
4 | 3 031.079 | 26.523 | 4 038.459 | 4.083 | 4 196.570 | 4.220 | 33.24 | 38.45 | 1.0 | 1.0 | |
5 | 2 986.407 | 26.062 | 4 122.606 | 3.976 | 4 142.255 | 4.389 | 38.05 | 38.70 | 1.0 | 1.0 | |
Ave | — | 3 079.218 | 26.790 | 4 064.637 | 4.214 | 4 151.116 | 4.310 | 32.00 | 34.81 | — | — |
60 | 1 | 9 604.442 | 72.216 | 12 558.948 | 9.042 | 12 512.393 | 8.810 | 30.76 | 30.28 | 1.0 | 1.0 |
2 | 9 534.382 | 73.693 | 12 559.403 | 9.625 | 12 619.900 | 9.955 | 31.73 | 32.36 | 0.9 | 1.0 | |
3 | 9 912.964 | 74.979 | 12 586.081 | 9.256 | 12 299.707 | 10.983 | 26.97 | 24.08 | 1.0 | 1.0 | |
4 | 9 496.693 | 69.484 | 12 373.219 | 8.824 | 12 783.132 | 10.156 | 30.29 | 34.61 | 0.9 | 1.0 | |
5 | 9 187.852 | 66.451 | 12 348.720 | 8.190 | 12 726.143 | 10.094 | 34.40 | 38.51 | 1.0 | 1.0 | |
Ave | — | 9 547.267 | 71.364 | 12 485.274 | 8.987 | 12 588.255 | 9.999 | 30.77 | 31.85 | — | — |
90 | 1 | 9 378.256 | 124.456 | 12 854.942 | 12.674 | 13 055.721 | 13.711 | 37.07 | 39.21 | 1.0 | 1.0 |
2 | 9 470.230 | 122.534 | 12 480.518 | 12.915 | 12 523.518 | 16.238 | 31.79 | 32.24 | 1.0 | 1.0 | |
3 | 9 279.456 | 99.309 | 12 680.626 | 12.744 | 13 515.244 | 16.766 | 36.65 | 45.65 | 1.0 | 1.0 | |
4 | 9 466.363 | 112.793 | 12 597.001 | 12.887 | 13 158.924 | 16.244 | 33.07 | 39.01 | 1.0 | 1.0 | |
5 | 9 592.995 | 96.299 | 12 657.266 | 12.112 | 12 967.308 | 16.212 | 31.94 | 35.17 | 1.0 | 1.0 | |
Ave | — | 9 437.460 | 111.078 | 12 654.071 | 12.667 | 13 044.143 | 15.834 | 34.08 | 38.22 | — | — |
120 | 1 | 10 689.500 | 196.357 | 14 936.332 | 20.671 | 14 488.041 | 22.008 | 39.73 | 35.54 | 1.0 | 1.0 |
2 | 9 540.459 | 236.136 | 14 160.884 | 21.286 | 14 135.028 | 26.320 | 48.43 | 48.16 | 1.0 | 1.0 | |
3 | 10 724.056 | 184.227 | 14 244.757 | 20.777 | 14 742.373 | 26.744 | 32.83 | 37.47 | 1.0 | 0.9 | |
4 | 10 505.718 | 206.063 | 14 654.288 | 19.446 | 15 414.342 | 26.820 | 39.49 | 46.72 | 1.0 | 1.0 | |
5 | 9 984.351 | 189.940 | 14 123.134 | 18.927 | 14 777.539 | 26.614 | 41.45 | 48.01 | 1.0 | 1.0 | |
Ave | — | 10 288.817 | 202.544 | 14 423.879 | 20.222 | 14711.465 | 25.701 | 40.19 | 42.98 | — | — |
[1] | KUMAR N, VIDYARTHI D P. A model for resource-constrained project scheduling using adaptive PSO[J]. Soft Computing, 2016, 20(4): 1565-1580. |
[2] | ELSAYED S, SARKER R, RAY T, et al. Consolidated optimization algorithm for resource-constrained project scheduling problems[J]. Information Sciences, 2017, 418/419: 346-362. |
[3] | LIU J, QIAO F, MA Y M, et al. Novel slack-based robust scheduling rule for a semiconductor manufacturing system with uncertain processing time[J]. Frontiers of Engineering Management, 2018, 5(4): 507-514. |
[4] | ELLOUMI S, FORTEMPS P, LOUKIL T. Multi-objective algorithms to multi-mode resource-constrained projects under mode change disruption[J]. Computers & Industrial Engineering, 2017, 106: 161-173. |
[5] | PAPROCKA I, SKOLUD B. A hybrid multi-objective immune algorithm for predictive and reactive scheduling[J]. Journal of Scheduling, 2017, 20(2): 165-182. |
[6] | VAN DE VONDER S, DEMEULEMEESTER E, HERROELEN W. Proactive heuristic procedures for robust project scheduling: An experimental analysis[J]. European Journal of Operational Research, 2008, 189(3): 723-733. |
[7] | VAN DE VONDER S, DEMEULEMEESTER E, HERROELEN W. A classification of predictive-reactive project scheduling procedures[J]. Journal of Scheduling, 2007, 10(3): 195-207. |
[8] | VARAKANTHAM P, FU N, LAU H C. A proactive sampling approach to project scheduling under uncertainty[C]∥30th AAAI Conference on Artificial Intelligence. Phoenix, Arizona, USA: AAAI, 2016: 3195-3201. |
[9] | 张国辉,吴立辉,聂黎,等. 考虑机器故障的柔性作业车间鲁棒调度方法[J]. 系统仿真学报,2016, 28(4): 867-873. |
ZHANG Guohui, WU Lihui, NIE Li, et al. Robust flexible job shop scheduling method with machine breakdowns[J]. Journal of System Simulation, 2016, 28(4): 867-873. | |
[10] | WANG D J, LIU F, WANG Y Z, et al. A knowledge-based evolutionary proactive scheduling approach in the presence of machine breakdown and deterioration effect[J]. Knowledge-Based Systems, 2015, 90: 70-80. |
[11] | 赵婵媛,陆志强,崔维伟. 考虑随机故障的流水线调度问题前摄优化方法[J]. 浙江大学学报(工学版), 2016, 50(4): 641-649. |
ZHAO Chanyuan, LU Zhiqiang, CUI Weiwei. Proactive scheduling optimization on flow shops with random machine breakdowns[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(4): 641-649. | |
[12] | 陆志强,张思源,崔维伟. 集成预防性维护和流水线调度的鲁棒性优化研究[J]. 自动化学报,2015, 41(5): 906-913. |
LU Zhiqiang, ZHANG Siyuan, CUI Weiwei. Integrating production scheduling and maintenance policy for robustness in flow shop problems[J]. Acta Automatica Sinica, 2015, 41(5): 906-913. | |
[13] | PAN W T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26(26): 69-74. |
[14] | LAMBRECHTS O, DEMEULEMEESTER E, HERROELEN W. A tabu search procedure for developing robust predictive project schedules[J]. International Journal of Production Economics, 2008, 111(2): 493-508. |
[15] | RANJBAR M, KIANFAR F, SHADROKH S. Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm[J]. Applied Mathematics & Computation, 2008, 196(2): 879-888. |
[16] | LAMBRECHTS O, DEMEULEMEESTER E, HERROELEN W. Time slack-based techniques for robust project scheduling subject to resource uncertainty[J]. Annals of Operations Research, 2011, 186(1): 443-464. |
[17] | 孙虎,周晶燕. 装配作业车间调度的免疫粒子群算法实现[J]. 武汉理工大学学报(信息与管理工程版), 2019, 41(3): 282-286. |
SUN Hu, ZHOU Jingyan. Implementation of immune particle swarm optimization algorithm for assembly job shop scheduling[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2019, 41(3): 282-286. |
[1] | 张颖,乔运龙,张海洋. 基于虚拟力和果蝇优化算法混合控制水声传感器网络部署策略[J]. 上海交通大学学报(自然版), 2017, 51(6): 715-721. |
[2] | 王雪刚a,邹早建a,b. 基于果蝇优化算法的支持向量机参数优化在船舶操纵预报中的应用[J]. 上海交通大学学报(自然版), 2013, 47(06): 884-888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||