上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (11): 1151-1156.doi: 10.16183/j.cnki.jsjtu.2019.107

• 学报(中文) • 上一篇    下一篇

基于支持向量机辅助的四轴陀螺两级故障诊断方法

胡晓强,仲训昱,张霄力,彭侠夫,何荧   

  1. 厦门大学 航空航天学院, 福建 厦门361005
  • 收稿日期:2019-04-23 出版日期:2020-12-04 发布日期:2020-12-04
  • 通讯作者: 仲训昱,男,副教授,电话(Tel.):13720885429;E-mail:zhongxunyu@xmu.edu.cn.
  • 作者简介:胡晓强(1991-),男,福建省宁德市人,博士生,主要从事组合导航及故障诊断研究.
  • 基金资助:
    惯性技术中国国防科技重点实验室基金(61425060201162506007)资助项目

A Two-Level Fault Diagnosis Method for Gyro-Quadruplet Assisted by Support Vector Machine

HU Xiaoqiang,ZHONG Xunyu,ZHANG Xiaoli,PENG Xiafu,HE Ying   

  1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2019-04-23 Online:2020-12-04 Published:2020-12-04

摘要: 在四轴冗余配置的惯导系统陀螺组件中,为了解决基于等价空间原理的诊断算法无法分离故障器件的问题,保证惯导系统陀螺组件的容错性能,提出一种基于支持向量机辅助的两级故障诊断方法.首先,以奇偶残差构建卡方检测量,采用广义似然比法对四轴陀螺组件进行实时的故障检测;然后,构建基于小波包变换与支持向量机的故障分类器,分析陀螺器件输出信号的能量特征,对传感器的运行状态进行判定;最后,结合广义似然比法的检测结果与故障分类器的输出,对四轴陀螺组件的故障进行判别,诊断系统故障源.仿真结果表明:所提方法能够快速准确地识别故障器件;在最小冗余配置条件下,保证了惯性系统陀螺组件一次故障正常工作的容错能力.

关键词: 支持向量机;四轴陀螺;惯性导航系统;故障诊断

Abstract: Aiming at the problem that the traditional parity space method cannot identify fault component in a gyro-quadruplet of the inertial navigation system, a two-level fault diagnosis method assisted by a support vector machine is proposed to ensure fault tolerance of the gyro module. The generalized likelihood ratio method, whose chi-square volume is constructed by parity residuals, is used for real-time fault detection of the four-axis gyro module. Then, a fault classifier composed of a wavelet packet transform and a support vector machine is constructed to analyze the energy characteristics of gyro output and determinate the operating state of gyro component. Finally, combining the detection results of the generalized likelihood ratio method with the output of the fault classifier, the fault source in the gyro module is detected and isolated. The simulation results show that the proposed method can quickly and accurately identify the faulty device, and thus ensure the performance of the gyro module under a minimum redundancy configuration.

Key words: support vector machine; gyro-quadruplet; integrated navigation system; fault diagnosis

中图分类号: