[1]ZHENG N, FANG G Q, CAO Z L, et al. High strain epoxy shape memory polymer[J]. Polymer Chemistry, 2015, 6(16): 3046-3053.
[2]吕海宝, 冷劲松, 杜善义. 形状记忆聚合物力学行为及其物理机制[J]. 固体力学学报, 2017, 38(1): 1-12.
LÜ Haibao, LENG Jinsong, DU Shanyi. Working mechanism for the mechanical behavior of shape memory polymer [J]. Chinese Journal of Solid Mechnics, 2017, 38(1): 1-12.
[3]JI S Z, WANG J, OLAH A, et al. Triple-shape-memory polymer films created by forced-assembly multilayer coextrusion[J]. Journal of Applied Polymer Science, 2017, 134(5): 44405
[4]MCCLUNG A J W, TANDON G P, BAUR J W. Effects of loading rate on the relaxation and recovery ability of an epoxy-based shape memory polymer[J]. Fluids, 2017, 2(2): 13.
[5]WANG Y K, TIAN W C, LIU X H, et al. Thermal sensitive shape memory behavior of epoxy composites reinforced with silicon carbide whiskers[J]. Applied Sciences, 2017, 7(1): 108.
[6]SANTIAGO D, SANJUAN-FABREGAT A, FERRANDO F, et al. Improving of mechanical and shape-memory properties in hyperbranched epoxy shape-memory polymers[J]. Shape Memory and Superelasticity, 2016, 2(3): 239-246.
[7]杜明昊. 形状记忆环氧树脂回复速率及其温度影响效应研究[D]. 北京: 北京交通大学, 2016.
DU Minghao. Investigation of temperature on the recovery rate of shape memory epoxy resin[D]. Beijing: Beijing Jiaotong University, 2016.
[8]谭巧. 形状记忆环氧聚合物及其复合材料的典型力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
TAN Qiao. Typical mechanical behavior of epoxy shape memory polymer and its composite[D]. Harbin: Harbin Institute of Technology, 2015.
[9]FAN P X, CHEN W J, ZHAO B, et al. Formulation and numerical implementation of tensile shape memory process of shape memory polymers[J]. Polymer, 2018, 148: 370-381.
[10]BHATTACHARYYA A, TOBUSHI H. Analysis of the isothermal mechanical response of a shape memory polymer rheological model[J]. Polymer Engineering & Science, 2000, 40(12): 2498-2510.
[11]DIANI J, LIU Y P, GALL K. Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers[J]. Polymer Engineering & Science, 2006, 46(4): 486-492.
[12]CHEN Y C, LAGOUDAS D C. A constitutive theory for shape memory polymers. Part II. A linearized model for small deformations[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1766-1778.
[13]GU J P, SUN H Y, FANG C Q. A finite deformation constitutive model for thermally activated amorphous shape memory polymers[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(12): 1530-1538.
[14]DIANI J, GILORMINI P, FRDY C, et al. Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity[J]. International Journal of Solids and Structures, 2012, 49(5): 793-799.
[15]LUO L, WANG X X, JIA Y X, et al. Recovery performance and characteristics in shape memory effects of aliphatic polyether urethane[J]. Polymers for Advanced Technologies, 2013, 24(7): 679-684.
[16]GOH S M, CHARALAMBIDES M N, WILLIAMS J G. Determination of the constitutive constants of non-linear viscoelastic materials[J]. Mechanics of Time-Dependent Materials, 2004, 8(3): 255-268.
[17]黄辉祥, 汤文成, 吴斌, 等. 基于超弹性模型的牙周膜力学行为数值模拟[J]. 上海交通大学学报, 2014, 48(9): 1263-1267.
HUANG Huixiang, TANG Wencheng, WU Bin, et al. Numerical simulation of mechanical behaviors of periodontal ligament based on hyperelastic model[J]. Journal of Shanghai Jiao Tong University, 2014, 48(9): 1263-1267.
[18]BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. 2nd ed. Chichester, UK: John Wiley & Sons, 2013.
[19]DASSAULT SYSTEM. Abaqus 6.13 documentation [EB/OL]. (2013-04-02)[2018-03-23]. http://dsk.ippt.pan.pl/docs/abaqus/v6.13/index.html. |