[1]TISCHENDORF C. Investigation of an ejector in a R744 refrigeration systems with intermediate pressure evaporator [D]. Braunschweig, Germany: Braunschweig University of Technology, 2014.
[2]LIU F, GROLL E A. Study of ejector efficiencies in refrigeration cycles [J]. Applied Thermal Engineering, 2013, 52(2): 360-370.
[3]LUCAS C, KOEHLER J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector[J]. International Journal of Refrigeration, 2012, 35(6): 1595-1603.
[4]YAZDANI M, ALAHYARI A A, RADCLIFF T D. Numerical modeling of two-phase supersonic ejectors for work-recovery applications[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5744-5753.
[5]PALACZ M, SMOLKA J, KUS W, et al. CFD-based shape optimisation of a CO2 two-phase ejector mixing section[J]. Applied Thermal Engineering, 2016, 95: 62-69.
[6]ANSYS Inc. ANSYS Fluent theory guide [CP]. Canonsburg, PA: ANSYS Inc, 2011.
[7]SINGHAL A K, ATHAVALE M M, LI H, et al. Mathematical basis and validation of the full cavita-tion model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[8]ELBEL S, HRNJAK P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J]. International Journal of Refrigeration, 2008, 31(3): 411-422.
[9]MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100.
[10]GNANI F, ZARE-BEHTASH H, KONTIS K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Sciences, 2016, 82: 36-56.
[11]LIEELE A B, GARIMELLA S. A critical review linking ejector flow phenomena with component- and system-level performance[J]. International Journal of Refrigeration, 2016, 70: 243-268.
[12]KAWAMOTO Y, OGATA G, SHAN Z. Ejector energy-saving technology for mobile air conditioning systems[J]. SAE Int J Passeng Cars-Mech Syst, 2017, 10(1): 102-110. |