[1]ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47: 1411-1478.
[2]陈益峰, 胡冉, 周创兵, 等. 热-水-力耦合作用下结晶岩渗透特性演化模型[J]. 岩石力学与工程学报, 2013, 32(11): 2185-2195.
CHEN Yifeng, HU Ran, ZHOU Chuangbing, et al. A permeability evolution model for crystalline rocks subjected to coupled thermo-hydro-mechanical loading [J]. Chinese Journal of Rock Mechanics and Enginee-ring, 2013, 32(11): 2185-2195.
[3]谭贤君, 陈卫忠, 伍国军, 等. 低温冻融条件下岩体温度-渗流-应力-损伤(THMD)耦合模型研究及其在寒区隧道中的应用[J]. 岩石力学与工程学报, 2013, 32(2): 239-250.
TAN Xianjun, CHEN Weizhong, WU Guojun, et al. Study of thermo-hydro-mechanical-damage(THMD) coupled model in the condition of freeze-thaw cycles and its application to cold region tunnels [J]. Chinese Journal of Rock Mechanics and Enginee-ring, 2013, 32(2): 239-250.
[4]KANG Y S, LIU Q S, HUANG S B. A fully coupled thermo-hydro-mechanical model for rock mass under freezing/thawing condition [J]. Cold Regions Science and Technology, 2013, 95(11): 19-26.
[5]SAINOKI A, MITRI H S. Numerical simulation of rock mass vibrations induced by nearby production blast [J]. Canadian Geotechnical Journal, 2014, 51(11): 1-10.
[6]贾善坡, 于洪丹, 伍国军, 等. 泥岩非线性蠕变损伤-渗透愈合耦合模型及其应用[J]. 应用基础与工程科学学报, 2016, 24(2): 364-377.
JIA Shanpo, YU Hongdan, WU Guojun, et al. New coupled model on nonlinear creep damage and permeability healing of mudstone and its application [J]. Journal of Basic Science and Engineering, 2016, 24(2): 364-377.
[7]PANTELEEV I A, KOSINA A A, PLEKHOV O A. Numerical simulation of artificial ground freezing in a fluid-saturated rock mass with account for filtration and mechanical processes [J]. Science in Cold and Arid Regions, 2017, 9(4): 363-377.
[8]彭守建, 谭虎, 许江, 等. 渗透水压作用下完整砂岩剪切-渗流耦合试验研究[J]. 岩土力学, 2017, 38(8): 2213-2220.
PENG Shoujian, TAN Hu, XU Jiang, et al. Experimental study on shear-seepage of coupled properties for complete sandstone under the action of seepage water pressure [J]. Rock and Soil Mechanics, 2017, 38(8): 2213-2220.
[9]ZHANG K, ZHOU H, SHAO J F. An experimental investigation and an elastoplastic constitutive model for a porous rock [J]. Rock Mechanics and Rock Engineering, 2013, 46: 1499-1511.
[10]赵阳升.多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010: 171-310.
ZHAO Yangsheng. Multi-field coupling in porous media and its engineering response [M]. Beijing: Science Press, 2010: 171-310.
[11]席道瑛, 徐松林.岩石物理与本构理论[M]. 合肥: 中国科学技术大学出版社, 2016: 484-571.
XI Daoying, XU Songlin. Rock physics and constitutive theory [M]. Hefei: Press of University of Science and Technology of China, 2016: 484-571.
[12]BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua [J]. International Journal of Solids and Structures, 2006, 43: 1764-1786.
[13]LADE P V, DE BOER R. The concept of effective stress for soil, concrete and rock [J]. Géotechnique, 1997, 47(1): 61-78.
[14]TERZAGHI K. The shearing resistance of saturated soils and the angle between the planes of shear[C]//Proceedings of the 1st International Conference of Soil Mechanics and Foundation Engineering. Cambridge, London: Harvard University Press, 1936: 54-56.
[15]BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
[16]SKEMPTON A W. Effective stress in soils, concrete and rocks, pore pressure and suction in soils[C]//Proceedings of the International Conference of Soil Mechanics and Foundation Engineering. London: Butterworths, 1961: 4-25.
[17]DE BOER R. Highlights in the historical development of the porous media: Toward a consistent macroscopic theory [J]. Applied Mechanics Reviews, 1996, 49(4): 201-262.
[18]SCHREFLER B A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions [J]. Applied Mechanics Reviews, 2002, 55(4): 351-388.
[19]胡亚元.饱和多孔介质的超粘弹性本构理论研究[J].应用数学和力学, 2016, 37(6): 584-598.
HU Yayuan. Study on the super viscoelastic constitutive theory for saturated porous media [J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598.
[20]邸元, 康志江, 代亚飞, 等. 复杂多孔介质多重介质模型的表征单元体[J]. 工程力学, 2015, 32(12): 33-39.
DI Yuan, KANG Zhijiang, DAI Yafei, et al. Representative elementary volume of the multiple-continuum model for complex porous media [J]. Engineering Mechanics, 2015, 32(12): 33-39.
[21]黄筑平. 连续介质力学基础. [M]. 2版. 北京: 高等教育出版社, 2012: 101-104.
HUANG Zhuping. Fundamentals of continuum mechanics [M]. 2nd ed. Beijing: Higher Education Press, 2012: 101-104.
[22]MEIDANI M, CHANG C S, DENG Y B. On active and inactive voids and a compression model for granular soils [J]. Engineering Geology, 2017, 222: 156-167.
[23]刘鹏, 丁文其. 双对数压缩曲线在海积软土本构中的应用[J]. 上海交通大学学报, 2016, 50(11): 1706-1711.
LIU Peng, DING Wenqi. Application of bi-logarithmic compression curves [J]. Journal of Shanghai Jiao Tong University, 2016, 50 (11): 1706-1711.
[24]龚晓南, 谢康和. 土力学[M]. 北京: 中国建筑工业出版社, 2014: 87.
GONG Xiaonan, XIE Kanghe. Soil mechanics [M]. Beijing: China Architecture and Building Press, 2014: 87.
[25]陈晶晶, 雷国辉. 决定饱和岩土材料变形的有效应力及孔压系数[J]. 岩土力学, 2012, 33(12): 3696-3703.
CHEN Jingjing, LEI Guohui. Effective stress and pore pressure coefficient controlling the deformation of saturated geomaterials [J]. Rock and Soil Mecha-nics, 2012, 33(12): 3696-3703.
[26]商翔宇, 郑秀忠, 周国庆. 高压下饱和黏土B系数研究[J]. 岩土工程学报, 2015, 37(3): 532-536.
SHANG Xiangyu, ZHENG Xiuzhong, ZHOU Guoqing. Coefficient B of saturated clay under high pre-ssure [J]. Chinese Journal of Geotechnical Enginee-ring, 2015, 37 (3): 532-536.
[27]GU X Q, YANG J, HUANG M S. Laboratory investigation on relationship between degree of saturation, B-value and P-wave velocity [J]. Journal of Central South University, 2013, 20(7): 2001-2007.
[28]FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated soil mechanics in engineering practice [M]. New York: John Wiley & Sons, 2012: 783-808. |