[1]MAHOWALD M W, SCHENCK C H. Insights from studying human sleep disorders[J]. Nature, 2005, 437: 1279-1285.
[2]HIRSHKOWITZ M. COMMENTARY—Standing on the shoulders of giants: The standardized sleep manual after 30 years[J]. Sleep Medicine Reviews, 2000, 4(2): 169-179.
[3]王菡侨.有关美国睡眠医学学会睡眠分期的最新判读标准指南解析[J]. 诊断学理论与实践, 2009, 8(6): 575-578.
WANG Hanqiao. Analysis of the latest interpretation standards for sleep staging of the american academy of sleep medicine[J]. Diagnostics Theory and Practice, 2009, 8(6): 575-578.
[4]戴冷湜. 脑电信号的特征提取与分析方法研究[D]. 杭州: 浙江大学, 2011: 21-23.
DAI Lengshi. Research on feature extraction and analysis methods of EEG signals[D]. Hangzhou: Zhejiang University, 2011: 21-23.
[5]COSTA M, GOLDBERGER A, PENG C K. Multi-scale entropy analysis of biological signal[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71( 2): 021906.
[6]FLEXER A, GRUBER G, DORFFNER G. A reliable probabilistic sleep stager based on a single EEG signal[J]. Artificial Intelligence in Medicine, 2005, 33 (3): 199-207.
[7]李谷, 范影乐, 李轶, 等.基于脑电信号Hilbert-Huang 变换的睡眠分期研究[J]. 航天医学与医学工程, 2007, 20(6): 458-463.
LI Gu, FAN Yingle, LI Yi, et al. Sleep staging based on EEG signal Hilbert-Huang transform [J]. Space Medicine and Medical Engineering, 2007, 20(6): 458-463.
[8]SOUSA T, CRUZ A, KHALIGHI S, et al. A two-step automatic sleep stage classification method with dubious range detection[J]. Computers in Biology and Medicine, 2015, 59: 42-53.
[9]KEMP B, ZWINDERMAN A H, TUK B, et al. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1185-1194.
[10]SHI J, LIU X, LI Y, et al. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning[J]. Journal of Neuroscience Methods, 2015, 254: 94-101.
[11]袁琦, 周卫东, 李淑芳, 等. 基于ELM和近似熵的脑电信号检测方法[J].仪器仪表学报, 2012, 33(3): 514-519.
YUAN Qi, ZHOU Weidong, LI Shufang, et al. EEG signal detection method based on ELM and approximate entropy[J]. Chinese Journal of Scientific Instrument, 2012, 33(3): 514-519.
[12]WU S D, WU C W, LIN S G, et al. Analysis of complex time series using refined composite multiscale entropy[J]. Physics Letters A, 2014, 378(20): 1369-1374.
[13]张涛, 陈万忠, 李明阳. 基于频率切片小波变换和支持向量机的癫痫脑电信号自动检测[J]. 物理学报, 2016, 65(3): 038703-1-7.
ZHANG Tao, CHEN Wanzhong, LI Mingyang. Automatic detection of epileptic EEG signals based on frequency slice wavelet transform and support vector machine[J]. Acta Physica Sinica, 2016, 65(3): 038703-1-7.
[14]BERRY R B, BROOKS R, GAMALDO C E, et al. The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications[S/OL]. Darien, Illinois, USA: American Academy of Sleep Medicine, 2012: 16-56[2017-07-10].http://aasm.org/resources/pdf/scoring-manual-preface.pdf.
[15]RODRGUEZ-SOTELO J, OSORIO-FORERO A, JIMNEZ-RODRGUEZ A, et al. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques[J]. Entropy, 2014, 16 (12): 6573-6589.
[16]RONZHINA M, JANOUEK O, KOLOV J, et al. Sleep scoring using artificial neural networks[J]. Sleep Medicine Reviews, 2012, 16(3): 251-263.
[17]JO H G, PARK J Y, LEE C K, et al. Genetic fuzzy classifier for sleep stage identification[J]. Computers in Biology and Medicine, 2010, 40(7): 629-634.
[18]HSU Y L, YANG Y T, WANG J S, et al. Automatic sleep stage recurrent neural classifier using energy features of EEG signals[J]. Neurocomputing, 2013, 104: 105-114.
[19]HASSAN A R, BASHAR S K, BHUIYAN M I H. On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram[C]//International Conference on Advances in Computing, Communications and Informatics (ICACCI). Kochi, India: IEEE, 2015: 2238-2243. |