[1]吴桃生, 李志敏, 王华, 等. 基于工装预变形的高速列车侧墙尺寸偏差控制方法[J]. 铁道机车车辆, 2012, 32(1): 1-5.
WU Taosheng, LI Zhimin, WANG Hua, et al. Variation control method for the sidewall of highspeed train based on fixture’s pre-variation[J]. Railway Locomotive & Car, 2012, 32(1): 1-5.
[2]张风东, 刘胜龙. 高速动车组铝合金车体底架焊接变形控制[J]. 机车车辆工艺, 2012, (6): 22-23.
ZHANG Fengdong, LIU Shenglong. Control measure of deformation on auto welding technology of underframe on EMU [J]. Locomotive & Rolling Stock Technology, 2012, (6): 22-23.
[3]DENG D, MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Computational Materials Science, 2006, 37(3): 269-277.
[4]TENG T L, FUNG C P, CHANG P H, et al. Analysis of residual stresses and distortions in T-joint fillet welds [J]. International Journal of Pressure Vessels & Piping, 2001, 78(8): 523-538.
[5]PERI M, TONKOVI Z, RODI A, et al. Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld [J]. Materials and Design, 2014, 53: 1052-1063.
[6]UEDA Y, YUAN M G. Prediction of residual stresses in butt welded plates using inherent strains [J]. Journal of Engineering Materials & Technology, 1993, 115(4): 417-423.
[7]DENG D, MURAKAWA H. FEM prediction of buckling distortion induced by welding in thin plate panel structures [J]. Computational Materials Science, 2008, 43(4): 591-607.
[8]DENG D, MURAKAWA H, LIANG W. Numerical simulation of welding distortion in large structures [J]. Computer Methods in Applied Mechanics & Engineering, 2007, 196(45/48): 4613-4627.
[9]LEE J M, SEO H D, CHUNG H. Efficient welding distortion analysis method for large welded structures [J]. Journal of Materials Processing Technology, 2018, 256: 36-50.
[10]LEE D, KWON K E, LEE J, et al. Tolerance analysis considering weld distortion by use of pregenerated database [J]. Journal of Manufacturing Science and Engineering, 2009, 131(4): 041012.
[11]PAHKAMAA A, WRMEFJORD K, KARLSSON L, et al. Combining variation simulation with welding simulation for prediction of deformation and variation of a final assembly [J]. Journal of Computing and Information Science in Engineering, 2012, 12(2): 021002-021007.
[12]LORIN S, CROMVIK C, EDELVIK F, et al. Variation simulation of welded assemblies using a thermo-elastic finite element model [J]. Journal of Computing and Information Science in Engineering, 2014, 14(3): 031003.
[13]LORIN S, CROMVIK C, EDELVIK F, et al. Simulation of non-nominal welds by resolving the melted zone and its implication to variation simulation[C]//ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, USA: ASME, 2014: V004T06A018.
[14]WRMEFJORD K, SDERBERG R, ERICSSON M, et al. Welding of non-nominal geometries-physical tests [J]. Procedia CIRP, 2016, 43: 136-141.
[15]RENZI C, PANARI D, LEALI F. Predicting tolerance on the welding distortion in a thin aluminum welded T-joint [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5/8): 2479-2494.
[16]汪建华, 陆皓, 魏良武. 固有应变有限元法预测焊接变形理论及其应用[J]. 焊接学报, 2002, 23(6): 36-40.
WANG Jianhua, LU Hao, WEI Liangwu. Prediction of welding distortions based on theory of inherent strain by FEM and its application [J]. Transactions of the China Welding Institution, 2002, 23(6): 36-40.
[17]李红涛, 宋绪丁. 不同热源模型对Q345中厚板焊接温度场的影响[J]. 热加工工艺, 2017, 46(23): 205-209.
LI Hongtao, SONG Xuding. Influence of different heat source models on welding temperature field of Q345 medium plate [J]. Hot Working Technology, 2017, 46(23): 205-209. |