[1]Council Aviation Safety. GE791 Occurrence investigation report, in-flight icing encounter and crash into the sea transasia airways flight 791, ATR72-200, B-22708, 17 kilometers southwest of Makung City, Penghu Islands, Taiwan, China, December 21, 2002[R]. ASC-AOR-05-04-001, Taipei: Council Aviation Safety.
[2]AKHURST R J. Aircraft accident report: In-flight icing encounter and loss of control, simmons airlines, DBA American Eagle Flight 4184, Avions de Transport Regional (Atr) Model 72-212, N401AM, Roselawn, Indiana, October 31, 1994[J]. Journal of Clinical Investigation, 2002, 109(12): 1533-1536.
[3]ZHANG C, LIU H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing[J]. Physics of Fluids, 2016, 28(6): 062107.
[4]KONG W L, LIU H. Development and theoretical analysis of an aircraft supercooled icing model[J]. Journal of Aircraft, 2014, 51(3): 975-986.
[5]BLACKMORE R Z, MAKKONEN L, LOZOWSKI E P. A new model of spongy icing from first principles[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D21): 4563.
[6]LOZOWSKI E, OLESKIW M, BLACKMORE R, et al. Spongy icing revisited: Measurements of ice accretion liquid fraction in two icing tunnels[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 658.
[7]KONG W L, LIU H. A theory on the icing evolution of supercooled water near solid substrate[J]. International Journal of Heat & Mass Transfer, 2015, 91: 1217-1236.
[8]TIRMIZI S H, GILL W N. Effect of natural convection on growth velocity and morphology of dendritic ice crystals[J]. Journal of Crystal Growth, 1987, 85(3): 488-502.
[9]SHIBKOV A A, GOLOVIN Y I, ZHELTOV M A, et al. Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water[J]. Physica A Statistical Mechanics & Its Applications, 2003, 319(81): 65-79.
[10]SCHREMB M, TROPEA C. Solidification of supercooled water in the vicinity of a solid wall[J]. Physical Review E, 2016, 94(5): 052804.
[11]IVANTSOV G P. Temperature field around a spheroidal, cylindrical and acicular crystal growing in a supercooled melt[C]∥Dynamics of Curved Fronts. New York: Academic Press, Inc, 1988: 243-245.
[12]GLICKSMAN M E, SCHAEFER R J, AYERS J D. Dendritic growth-A test of theory[J]. Metallurgical Transactions A, 1976, 7(11): 1747-1759.
[13]KARMA A, RAPPEL W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1998, 57(4): 4323-4349.
[14]KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1996, 53(4): R3017.
[15]OHNO M. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities[J]. Physical Review E, 2012, 86(1): 051603.
[16]XING H, DUAN P P, DONG X L, et al. Phase-field modeling of growth pattern selections in three-dimensional channels[J]. Philosophical Magazine, 2015, 95(11): 1184-1200.
[17]XING H, ZHANG L M, SONG K K, et al. Effect of interface anisotropy on growth direction of tilted dendritic arrays in directional solidification of alloys: Insights from phase-field simulations[J]. International Journal of Heat & Mass Transfer, 2017, 104: 607-614.
[18]XING H, DONG X L, WU H J, et al. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially orientated crystals: A phase-field study[EB/OL]. (2016-06-23) [2017-08-17]. http:∥www.nature.com/scientificreports.
[19]DEMANGE G, ZAPOLSKY H, PATTE R, et al. A phase field model for snow crystal growth in three dimensions[J]. NPJ Computational Materials, 2017(3): 1.
[20]NAKAYA U, ISONOSUKE. Preliminary experiments on the artificial production of snow crystals[J]. Journal of the Faculty of Science, 1938, 2(1): 1-11.
[21]KARMA A, RAPPEL W J. Phase-field model of dendritic sidebranching with thermal noise[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1999, 60(4): 3614-3625.
[22]LIBBRECHT K G. Physical dynamics of ice crystal growth[J]. Annual Review of Materials Research, 2017, 47: 271-295.
[23]SHIBKOV A A, ZHELTOV M A, KOROLEV A A, et al. Crossover from diffusion-limited to kinetics-limited growth of ice crystals[J]. Journal of Crystal Growth, 2005, 285(1): 215-227.
[24]吕勇军. 声悬浮和自由落体条件下深过冷与快速凝固研究[D]. 西安: 西北工业大学材料学院, 2002.
L Yongjun. Rapid solidification of undercooled water and alloy during acoustic levitation and free fall[D]. Xi’an: School of Materials Science and Engineering, Northwestern Polytechnical University, 2002.
[25]段培培, 邢辉, 陈志, 等. 镁基合金自由枝晶生长的相场模拟研究[J]. 物理学报, 2015, 64(6): 60201-1-60201-9.
DUAN Peipei, XING Hui, CHEN Zhi, et al. Phase-field modeling of free dendritic growth of magnesium based alloy[J]. Acta Physica Sinica, 2015, 64(6): 60201-1-60201-9.
[26]LANGER J S, MLLER-KRUMBHAAR J. Stability effects in dendritic crystal growth[J]. Journal of Crystal Growth, 1977, 42: 11-14.
[27]HILLIG W B, TURNBULL D. Theory of crystal growth in undercooled pure liquids[J]. Journal of Chemical Physics, 1956, 24(4): 914.
[28]GLICKSMAN M E, LUPULESCU A O. Dendritic crystal growth in pure materials[J]. Journal of Crystal Growth, 2004, 264(4): 541-549.
[29]LIPTON J, GLICKSMAN M E, KURZ W. Dendritic growth into undercooled alloy metals[J]. Materials Science & Engineering, 1984, 65(1): 57-63.
[30]BEAUGENDRE H, MORENCY F, HABASHI W G. FENSAP-ICE’s three-dimensional in-flight ice accretion module: ICE3D[J]. Journal of Aircraft, 2003, 40(2): 239-247.
[31]MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat & Mass Transfer, 2004, 47(25): 5483-5500. |