[1]李伟龙, 吴德伟, 周阳, 等.基于生物位置细胞放电机理的空间位置表征方法[J].电子与信息学报, 2016, 38(8): 2040-2046. DOI: 10.11999/jeit151331.
LI Weilong, WU Dewei, ZHOU Yang, et al. A method of spatial place representation based on biological place cells firing[J]. Journal of Electronics and Information Technology, 2016, 38(8): 2040-2046. DOI: 10.11999/jeit151331.
[2]杨晶东, 杨敬辉, 蔡则苏.基于多目标优化的移动机器人避障算法[J].上海交通大学学报, 2012, 46(2): 213-216.
YANG Jingdong, YANG Jinghui, Cai Zesu. Obstacle avoidance based on multiple objective optimization for mobile robots[J]. Journal of Shanghai Jiao Tong University, 2012, 46(2): 213-216.
[3]EDVARDSEN V. Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network[J]. Natural Computing, 2016(2): 1-15.
[4]O’KEEFE J, DOSLROVSKV J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1): 171-175. DOI: 10.1016/0006-8993(71)90358-1.
[5]MAYA G S, LIORA L, YOSSI Y, et al. Spatial cognition in bats and rats: From sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(4): 94-108. DOI: 10.1038/nrn3888.
[6]MOSER E I, KROPFF E, MOSER M B. Place cells, grid cells, and the brain’s spatial representation system[J]. Annual Review of Neuroscience, 2008, 31(1): 69-89. DOI: 10.1146/annurev.neuro.31.061307.090723.
[7]SHEYNIKHOVICH D, GREZES F, KING J R, et al. Exploratory behaviour depends on multisensory integration during spatial learning[C]∥ICANN 2012, Part I, LNCS 7552. Berlin Heidelberg: Springer, 2012: 296-303. DOI: 10.1007/978-3-642-33269-2_38.
[8]BUSH D, BARRY C, BURGESS N. What do grid cells contribute to place cell firing?[J]. Cell, 2014, 37(3): 136-145. DOI: 10.1016/j.tins.2013.12.003.
[9]KESNER R P, ROLLS E T. A computational theory of hippocampal function, and tests of the theory: New developments[J]. Neuroscience and Biobehavioral Reviews, 2015, 48: 92-147. DOI: 10.1016/j.neubiorev. 2014.11.009.
[10]MUESSIG L, HAUSER J, WILLS T J, et al. A developmental switch in place cell accuracy coincides with grid cell maturation[J]. Neuron, 2015, 86(5): 1167-1173. DOI: 10.1016/j.neuron.2015.05.011.
[11]SOLSTAD T, MOSER E I, EINEVOLL G T. From grid cells to place cells: a mathematical model[J]. Hippocampus, 2006, 16(12): 1026-1031. DOI: 10.1002/hipo.20244.
[12]SI B, TREVES A. The role of competitive learning in the generation of DG fields from EC inputs[J]. Cognitive Neurodynamics, 2009, 3(2): 177-187. DOI: 10.1007/s11571-009-9079-z.
[13]FRANZIUS M, VOLLGRAF R, WISKOTT L. From grids to places[J]. Computational Neuroscience, 2007, 22(3): 297-299. DOI: 10.1007/s10827-006-0013-7.
[14]DALLEMOLE V L, ARAJO A F R. A novel topological map of place cells for autonomous robots[C]∥ICANN, part II, LNCS 6353. Berliin: Springer-Verlag Berliin Heideberg, 2010: 296-306. DOI: 10.1007/978-3-642-1582 2-3_37.
[15]JAUFFRET A, CUPERLIER N, GAUSSIER P. From grid cells and visual place cells to multimodal place cell: A new robotic architecture[J]. Frontiersin Neurorobotics, 2015, 9(1): 1-22. DOI: 10.3389/fnbot.2015.00001.
[16]ZHOU Y, WU D W. Grid-to-place cells model based on radial basis function network[J]. Electronics Letter, 2017, 53(3): 200-201. DOI: 10.1049/el.2016.1750.
[17]ZHOU Y, WU D W. A model of generating visual place cells based on environment perception and similar measure[J]. Computational Intelligence and Neuroscience, 2016(3): 1-9. DOI: 10.1155/2016/3253678. |