[1]ISHII T. Shape memory & superelastic alloys[M]. Philadelphia: Woodhead Publishing, 2011: 63-76.
[2]ATTANASI G, AURICCHIO F, URBANO M. Theoretical and experimental investigation on sma superelastic springs[J]. Journal of Materials Engineering & Performance, 2011, 20(4/5): 706-711.
[3]KIM S, HAWKES E, CHOY K, et al. Micro artificial muscle fiber using NiTi spring for soft robotics[C]∥The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St Louis: IEEE, 2009: 2228-2234.
[4]SINGH H, JUIKAR P, TIWARI T N, et al. Failure diagnosis & reliability assessment of NiTi shape memory alloy spring for micro-Actuators[C]∥International Conference on Robotics, Automation, Control and Embedded Systems. Chennai: IEEE, 2015.
[5]MASUDA A, MORI Y, SHIMABUKURO S. A concept of shock absorption mechanisms using buckling phenomena and hysteretic spring elements[J]. Journal of System Design & Dynamics, 2008, 2(1): 165-176.
[6]ATTANASI G, AURICCHIO F. Innovative superelastic isolation device [J]. Journal of Earthquake Engineering, 2011, 15(Sup1): 72-89.
[7]HUANG B, ZHANG H, WANG H, et al. Passive base isolation with superelastic nitinol sma helical springs [J]. Smart Materials & Structures, 2014, 23(6): 1656-1665.
[8]HUANG B, WUCHUAN P U, ZHANG H, et al. Study on seismic responses of base isolated structures with superelastic sma helical springs[J]. Earthquake Engineering & Engineering Dynamics, 2014, 34(2): 209-215.
[9]FROST M, SEDLK P, KADERVEK L, et al. Numerical and experimental investigation of shape memory alloys subjected to complex mechanical loading: A case study of a NiTi helical spring[C]∥7th ECCOMAS Thematic Conference on Smart Structures and Materials. S Miguel: Paula Jorge, 2015.
[10]BEULE M D. Finite element stent design[D]. Brussels: Gent University, 2008
[11]VIBHUTE P J. Open-coil retraction spring [J]. Case Reports in Dentistry, 2011 (3): 1-4.
[12]ZHOU X,YOU Z. Theoretical analysis of superelastic SMA helical structures subjected to axial and torsional loads[J]. Smart Structures and Systems, 2015, 15(5): 1271-1291.
[13]NUUTINEN J P, CLERC C, TRML P. Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents[J]. Journal of Biomaterials Science (Polymer Edition), 2003, 14(7): 677-687.
[14]DE B M, VAN C S, MORTIER P, et al. Virtual optimization of self-expandable braided wire stents[J]. Medical Engineering & Physics, 2009, 31(4): 448-453.
[15]WANG R,RAVI-CHANDAR K. Mechanical response of a metallic aortic stent-part I: Pressure-diameter relationship[J]. Journal of Applied Mechanics, 2004, 71(5): 697-705.
[16]ISAYAMA H, NAKAI Y, TOYOKAWA Y, et al. Measurement of radial and axial forces of biliary self-expandable metallic stents[J]. Gastrointestinal Endoscopy, 2009, 70(1): 37-44.
[17]WALH A M. Mechanical springs[M]. Cleveland: Penton Publishing Company, 1944. |