上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (7): 819-825.
倪问池1,2,康庄1,张橙1,张立健1
出版日期:
2017-07-31
发布日期:
2017-07-31
基金资助:
NI Wenchi1,2,KANG Zhuang1,ZHANG Cheng1,ZHANG Lijian1
Online:
2017-07-31
Published:
2017-07-31
Supported by:
摘要: 针对低质量比圆柱双自由度涡激振动振幅响应的数值模拟结果小于实验值的问题,基于OpenFOAM开源软件,对标准剪应力输运(SST)湍流模型以及数值模拟方法进行了修正,并通过圆柱绕流算例进行验证.运用扫频法,对约化速度为2~14,质量比m*=2.6的圆柱双自由度涡激振动进行了数值模拟,并对结果进行了详细的分析与对比.结果表明,与标准SST模型的结果相比,采用修正SST模型的数值模拟结果与实验数据更为接近,运用扫频法能更好地体现涡激振动的非线性特性.文中提出的修正模型可以应用于海洋立管涡激振动的预报.
中图分类号:
倪问池1,2,康庄1,张橙1,张立健1. 运用修正剪应力输运湍流模型模拟双自由度涡激振动[J]. 上海交通大学学报(自然版), 2017, 51(7): 819-825.
NI Wenchi1,2,KANG Zhuang1,ZHANG Cheng1,ZHANG Lijian1. Simulation of Two Degrees of Freedom VortexInduced Vibration by
Using Improved Shear Stress Transport Model[J]. Journal of Shanghai Jiaotong University, 2017, 51(7): 819-825.
[1]YANG Xiaoyu, TUCKER P G. Assessment of turbulence model performance: Severe acceleration with large integral length scales[J]. Computers & Fluids, 2016, 126: 181191. [2]BASSI F, BOTTI L, COLOMBO A, et al. On the development of an implicit highorder Discontinuous Galerkin method for DNS and implicit LES of turbulent flows[J]. European Journal of MechanicsB/Fluids, 2015, 51(13): 17581760. [3]ASHTON N, WEST A, LARDEAU S, et al. Assessment of RANS and DES methods for realistic automotive models[J]. Computers & Fluids, 2016, 128: 115. [4]SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat & Fluid Flow, 2000, 21(3): 252263. [5]JOHANSSON S H, DAVIDSON L, OLSSON E. Numerical simulation of vortex shedding past triangular cylinders at high Reynolds number using a kε turbulence model[J]. International Journal for Numerical Methods in Fluids, 1993, 16(10): 859878. [6]谷家扬, 杨建民, 肖龙飞. 两种典型立柱截面涡激运动的分析研究[J]. 船舶力学, 2014(10): 11841194. GU Jiayang, YANG Jianmin, XIAO Longfei. Study on vortex induced motion of two typical different crosssection columns[J]. Journal of Ship Mechanics, 2014(10): 11841194. [7]林琳, 王言英. 不同湍流模型下圆柱涡激振动的计算比较[J]. 船舶力学, 2013, 17(10): 11151125. LIN Lin, WANG Yanying. Comparison between different turbulence models on vortex induced vibration of circular cylinder[J]. Journal of Ship Mechanics, 2013, 17(10): 11151125. [8]SRINIL N, ZANGANEH H, DAY A. Twodegreeoffreedom VIV of circular cylinder with variable natural frequency ratio: Experimental and numerical investigations[J]. Ocean Engineering, 2013, 73(8): 179194. [9]JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortexinduced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509: 2362. [10]YOUNIS B A, PRZULJ V P. Computation of turbulent vortex shedding[J]. Computational Mechanics, 2006, 37(5): 408425. [11]杨帆, 彭波, 陈陈, 等. 基于扫频法的直流附加控制器设计[J]. 上海交通大学学报, 2008, 42(12): 20102014. YANG Fan, PENG Bo, CHEN Chen, et al. Design of HVDC supplementary controller based on frequency scanning method[J]. Journal of Shanghai Jiao Tong University, 2008, 42(12): 20102014. [12]MENTER F R. Twoequation eddyviscosity turbulence models for engineering applications[J]. Aiaa Journal, 2012, 32(8): 15981605. [13]DURAO D F G, HEITOR M V, PEREIRA J C F. Measurements of turbulent and periodic flows around a square crosssection cylinder[J]. Experiments in Fluids, 1988, 6(5): 298304. [14]JUNG Y W, PARK S O. Vortexshedding characteristics in the wake of an oscillating airfoil at low Reynolds number[J]. Journal of Fluids & Structures, 2005, 20(3): 451464. [15]WILCOX D C. Turbulence modeling for CFD[M]. California, USA: DCW Industries Inc, La Canada, 1998: 363367. [16]KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD=3900[J]. Physics of Fluids, 2000, 12(2): 403417. [17]IEROTHEOU C S, RICHARDS C W, CROSS M. Vectorization of the SIMPLE solution procedure for CFD problems. Part II: The impact of using a multigrid method[J]. Applied Mathematical Modelling, 1989, 13(9): 530536. [18]ZDRAVKOVICH M M. Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1990, 33(1): 5362. [19]ESDU. Mean forces, pressure and flow field velocities for circular cylindrical structures single cylinder with twodimensional flow: ESDU 80025[S]. London: IHS ESDU International Plc, 1986: 166. [20]NORBERG C. Fluctuating lift on a circular cylinder: Review and new measurements[J]. Journal of Fluids & Structures, 2003, 17(1): 5796. [21]端木玉, 万德成. 单向及两向自由度低质量比弹性支撑圆柱体的涡激振动[C]∥第十七届中国海洋(岸)工程学术讨论会论文集. 南宁: 海洋工程学会, 2015: 7177. [22]KANG Zhuang, NI Wenchi, SUN Liping. An experimental investigation of twodegreesoffreedom VIV trajectories of a cylinder at different scales and natural frequency ratios[J]. Ocean Engineering, 2016, 126: 187202. |
[1] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[2] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[3] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[4] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[5] | 李鹏, 王超, 孙华伟, 郭春雨. 潜艇阻力及流场数值仿真策略优化分析[J]. 上海交通大学学报, 2022, 56(4): 506-515. |
[6] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[7] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[8] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[9] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[10] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
[11] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[12] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[13] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[14] | 郑高媛, 赵亦希, 崔峻辉. 车身用铝饰条拉弯成形面畸变缺陷形成规律[J]. 上海交通大学学报, 2022, 56(1): 53-61. |
[15] | 金戈, 范珉, 周振栋, 谭勇, 钟小波. 升降式止回阀动态特性分析与改进[J]. 上海交通大学学报, 2021, 55(S2): 110-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||