上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (2): 202-.

• 无线电电子学、电信技术 • 上一篇    下一篇

一种基于产生式分数空间的单样本人脸识别方法

王斌1,刘允才2,茅红伟1   

  1. 1. 上海师范大学 信息与机电工程学院,上海 200234;
    2. 上海交通大学 电子信息与电气工程学院,上海 200240
  • 出版日期:2017-02-28 发布日期:2017-02-28
  • 基金资助:

    国家自然科学基金资助项目(61503251)

Single Sample Face Identification Based on Generative Score Space

WANG Bin1,LIU Yuncai2,MAO Hongwei1   

  1. 1. College of Information, Mechanical and Electrical Engineering, Shanghai Normal University,
    Shanghai 200234, China; 2. School of Electronic Information and Electrical Engineering,
    Shanghai Jiao Tong University, Shanghai 200240, China
  • Online:2017-02-28 Published:2017-02-28

摘要:

提出一种基于产生式分数空间的单样本人脸识别方法.首先设计了适用于人脸表示的概率产生式模型,并有效地结合了分部式方法的灵活性和稀疏成分分析的稳健性.然后基于该模型导出分数函数(特征映射),并构建了本质上是观测数据、隐变量和模型参数函数的概率相似度.最后,基于2个标准人脸数据库进行了仿真实验,验证了所提出方法的有效性.

关键词: 产生式分数空间, 单样本人脸识别, 概率相似度

Abstract:

In this paper,  a generativescorespace model was proposed, based on which a face recognition approach was derived. First, the proposed approach designed a probabilistic generative model for face representation, which effectively combined the flexibility of partsbased paradigm   with the robustness of sparse component analysis. Then, a score function (i.e. feature mapping) was derived based on the model. Besides,  a similarity measure was constructed for single sample face identification, which is essentially the function over observed variables, hidden variables and model parameters. The proposed approach was evaluated on two standard face databases to validate its effectiveness.

Key words: generative score space, single sample face identification, probabilistic similarity measure

中图分类号: