[1]YOUNG B A, GAO X, SRIVATSAN T S. A study of life prediction differences for a nickelbase Alloy 690 using a threshold and a nonthreshold model[J]. Journal of Nuclear Materials, 2009, 394(1): 6366.
[2]PENG Q J, HOU J, YONEZAWA T, et al. Environmentally assisted crack growth in onedimensionally cold worked Alloy 690TT in primary water[J]. Corrosion Science, 2012, 57(4): 8188.
[3]ALRUBAIE K S, GODEFROID L B, LOPES J A M. Statistical modeling of fatigue crack growth rate in Inconel alloy 600[J]. International Journal of Fatigue, 2007, 29(5): 931940.
[4]DU D, CHEN K, YU L, et al. SCC crack growth rate of cold worked 316L stainless steel in PWR environment[J]. Journal of Nuclear Materials, 2015, 456(11): 228234.
[5]CHOPRA O K, SOPPET W K, SHACK W J, et al. Effects of alloy chemistry, cold work, and water chemistry on corrosion fatigue and stress corrosion cracking of nickel alloys and welds[J]. Journal of Hospice & Palliative Nursing, 2001, 4(4): 206207.
[6]PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85 (4): 528533.
[7]SHOJI T, TAKAHASHI H, SUZUKI M, et al. A new parameter for characterizing corrosion fatigue crack growth[J]. Journal of Engineering Materials and Technology, 1981, 103(4): 298304.
[8]ANDRESEN P L, FORD F P. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems[J]. Materials Science and Engineering, 1988, 103(1): 167184.
[9]ANDRESEN P L, MORRA, M M. Critical processes to model in predicting stress corrosion response in hot water[J]. Corrosion, 2008, 64(1): 1529.
[10]ARIOKA K, YAMADA T, TERACH I T, et al. Influence of carbide precipitation and rolling direction on intergranular stress corrosion cracking of austenitic stainless steels in hydrogenated hightemperature water[J]. Corrosion, 2006, 62(7): 568575. |