上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (02): 169-175.
金竹雨,张晓晶
收稿日期:
2014-11-14
出版日期:
2016-02-29
发布日期:
2016-02-29
基金资助:
JIN Zhuyu,ZHANG Xiaojing
Received:
2014-11-14
Online:
2016-02-29
Published:
2016-02-29
摘要: 摘要: 针对单根Z-pin拔出试验以及未增强/Z-pin增强的双悬臂梁(DCB)试验建立了三维有限元仿真模型.在拔出试验的模拟过程中,以静-动摩擦系数模拟Z-pin在基体中的脱胶拔出过程,以计算所得桥联力作为输入参数,通过连接器模拟Z-pin在层合板中的桥联作用,得到了DCB试验的载荷-位移曲线.同时,将所建模型用于计算异型截面Z-pin的桥联力,以及异型截面Z-pin增强DCB试件的载荷,以定量分析Z-pin截面周长对其增强效果的影响.结果表明,所建立的有限元模型的模拟结果与实验值较吻合.
中图分类号:
金竹雨,张晓晶. 在I型模式下异型截面Z-pin增强效果的数值分析[J]. 上海交通大学学报(自然版), 2016, 50(02): 169-175.
JIN Zhuyu,ZHANG Xiaojing. Numerical Analysis of Reinforcement Effect of Z-Pins withSpecial-Shaped CrossSection Under Mode I Delamination[J]. Journal of Shanghai Jiaotong University, 2016, 50(02): 169-175.
[1]CARTI D D R. Effect of zfibresTM on the delamination behavior of carbonfibre/epoxy laminates[D]. England: Cranfield University, 2000. [2]GRASSI M, ZHANG X. Finite element analyses of mode I interlaminar delamination in Zfibre reinforced composite laminates[J]. Composites Science and Technology, 2003, 63(12): 18151832. [3]BYRD L W, BIRMAN V. Effectiveness of Zpins in preventing delamination of cocured composite joints on the example of a double cantilever test[J]. Composites Part B: Engineering, 2006, 37(4): 365378. [4]LI R, HUONG N, CROSKY A, et al. Improving bearing performance of composite bolted joints using Zpins[J]. Composites Science and Technology, 2009, 69(7): 883889. [5]杨帆, 郑锡涛, 李亚智, 等. Zpin 增强复合材料Ⅰ型断裂韧性数值分析[J]. 复合材料学报, 2009, 26(4): 163168. YANG Fan, ZHENG Xitao, LI Yazhi, et al. Numerical study on the mode I fracture toughness of Zpin reinforced laminates[J]. Acta Materiae Compositae Sinica, 2009, 26(4): 163168. [6]郑锡涛, 李泽江, 杨帆. Zpin增强复合材料层合板断裂韧性试验研究[J]. 复合材料学报, 2010, 27(4): 180188. ZHENG Xitao, LI Zejiang, YANG Fan. Experimental investigation on the fracture toughness of Zpins reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(4): 180188. [7]李成虎, 燕瑛. Zpin增强复合材料T型接头层间性能的建模与分析[J]. 复合材料学报, 2010, 27(6): 152157. LI Chenghu, YAN Ying. Modeling and analysis of Zpin reinforcing in throughthickness direction of composite Tjoint [J]. Acta Materiae Compositae Sinica, 2010, 27(6): 152157. [8]TORAL V J, CASTANI B, BARRAU J J, et al. Multilevel analysis of lowcost Zpinned composite joints. Part 1: Single Zpin behavior[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 20702081. [9]PARK Y B, LEE B H, KWEON J H, et al. The strength of composite bonded Tjoints transversely reinforced by carbon pins[J]. Composite Structures, 2012, 94(2): 625634. [10]KOH T M, FEIH S, MOURITZ A P. Strengthening mechanics of thin and thick composite Tjoints reinforced with Zpins[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(8): 13081317. [11]MOURITZ A P, KOH T M. Reevaluation of mode I bridging traction modelling for Zpinned laminates based on experimental analysis[J]. Composites Part B: Engineering, 2014,56: 797807. [12]王晓旭, 陈利. Zpin 的拔出强度试验研究[J]. 材料工程, 2011(11): 14. WANG Xiaoxu, CHEN Li. Experimental study on pullout strength of Zpins [J]. Journal of Materials Engineering, 2011(11): 14. [13]DAI S C, YAN W, LIU H Y, et al. Experimental study on Zpin bridging law by pullout test[J]. Composites Science and Technology, 2004, 64(16): 24512457. [14]PLAIN K P, TONG L. Traction law for inclined throughthickness reinforcement using a geometrical approach [J]. Composite Structures, 2009, 88(4): 558569. [15]PLAIN K P, TONG L. Experimental validation of theoretical traction law for inclined throughthickness reinforcement [J]. Composite Structures, 2009, 91(2): 148157. [16]CUI H, LI Y, KOUSSIOS S, et al. Bridging micromechanisms of Zpin in mixed mode delamination[J]. Composite Structures, 2011, 93(11): 26852695. [17]BIANCHI F, ZHANG X. A cohesive zone model for predicting delamination suppression in Zpinned laminates[J]. Composites Science and Technology, 2011, 71(16): 18981907. [18]匡国强. Zpin 增韧复合材料层压板面内性能预测 [D]. 上海交通大学航空航天学院, 2009. [19]Cox B N. Snubbing effects in the pullout of a fibrous rod from a laminate[J]. Mechanics of Advanced Materials and Structures, 2005, 12(2): 8598. |
[1] | 陈海棠1,2,胡成亮 1,2,龚爱军3,施卫兵3,赵震1,2. 用于冷挤压的新型类喷丸润滑工艺[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 322-329. |
[2] | 王益厚, 付世晓, 许玉旺, 李帅, 傅强, 刘富祥. 船型网箱运动-波浪场扰动-网衣受力耦合动力响应特性[J]. 上海交通大学学报, 2024, 58(2): 147-155. |
[3] | 陈云龙, 邓都都, 刘智键, 阮海龙, 梁 涛, 刘广治, 郭龙川. 国内外海底接驳技术现状与关键[J]. 海洋工程装备与技术, 2024, 11(1): 90-98. |
[4] | 王伟, 李巍, 赵晓磊, 李楠, 张腾月. 基于显式算法的水下连接器密封圈碰撞分析 [J]. 海洋工程装备与技术, 2023, 10(3): 138-143. |
[5] | 刘晓, 张宁, 朱伟, 李森, 刘程程, 熊涛, 李泽邦. 水下采油树闸阀及连接器关键测试技术及应用[J]. 海洋工程装备与技术, 2023, 10(2): 61-66. |
[6] | 谭顿,陶建峰,陈良深,王旭永. 叶片摩擦系数对液压凸轮转子伺服马达转矩性能影响[J]. 上海交通大学学报, 2020, 54(2): 160-166. |
[7] | 林晓华, 赵亦农. 干式离合器摩擦片摩擦系数测试台架设计[J]. 实验室研究与探索, 2017, 36(5): 48-52. |
[8] | 曹树杰, 王冬石, 温纪宏, 金学义, 宋林松. 深水防喷器系统可靠性分析[J]. 海洋工程装备与技术, 2017, 4(1): 1-6. |
[9] | 赵玉璋, 王凯, 王武荣, 韦习成. 高强度双相DP780钢板冲压成形的变摩擦系数模型及其应用[J]. 上海交通大学学报, 2015, 49(10): 1446-1451. |
[10] | 王浩伟a,徐廷学a,周伟b. 综合退化数据与寿命数据的某型电连接器寿命预测方法[J]. 上海交通大学学报(自然版), 2014, 48(05): 702-706. |
[11] | 董丽宁,全晓军,郑平. 微针肋阵列通道中水的层流摩擦系数的模拟 [J]. 上海交通大学学报(自然版), 2010, 44(11): 1561-1565. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 918
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||