上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (09): 1332-1338.

• 机械仪表工程 • 上一篇    下一篇

基于改进离散粒子群算法构建制造单元

冯翰信1,王贺2,姚骏1,潘尔顺1,奚立峰1   

  1. (1.上海交通大学 机械与动力工程学院,上海 200240; 2.首都航天机械公司,北京 100076)
  • 收稿日期:2014-10-28
  • 基金资助:

    国家自然科学基金资助项目(51475304),上海市自然科学基金资助项目(12ZR1414400),中国博士后科学基金资助项目(2014M561465)

An Improved Discrete PSO-Based Approach for Cell Formation Problem

FENG Hanxin1,Wang He2,YAO Jun1,PAN Ershun1,XI Lifeng1   

  1. (1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;2. Capital Aerospace Machinery Corporation, Beijing 100076, China)
  • Received:2014-10-28

摘要:

摘要:  在未知最佳分群单元数的情况下,考虑了零件多种可选工艺路径和零件工艺顺序,建立基于最小化零件跨单元移动次数的数学模型.通过引入自适应变异因子,提出一种改进的离散粒子群优化算法能动态地确定分群单元数,极大地减少了算法陷入局部最优解的可能.通过对文献中不同规模的单元构建问题进行求解,结果证明了该方法有效,并且无需预先设定分群单元数即可获得与文献中相同甚至更好的结果.
关键词:  单元构建; 离散粒子群优化算法; 可选加工路径; 工艺顺序; 最佳分群单元数
中图分类号:  TH 18文献标志码:  A

Abstract:

Abstract: The configuration of manufacturing cell was focused on taking into consideration alternative process routings and operation sequences of parts without predetermined number of cells, and a mathematical model was proposed with the objective of minimizing intercellular movements. An automatic clustering approach based on the improved discrete particle swarm optimization was proposed for the cell formation problem (ACPSOCF). The selfadaptive parameter for mutation was introduced to improve the diversity of particle swarm and determine the best number of cells automatically. The experimental results verify the effectiveness of the proposed approach on all test problems, which exceeds or matches the quality of the best solutions presented in the literature, without predetermination of the number of cells.

Key words: cell formation; discrete particle swarm optimization algorithm, alternative process routing, operation sequence, best number of cells