上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (05): 725-729.

• 其他 • 上一篇    下一篇

基于热误差敏感度图的温度关键点选择方法

赵海涛1,冯伟1,周海1,杨建国2   

  1. (1.盐城工学院 机械工程学院, 江苏 盐城 224051; 2. 上海交通大学 机械与动力工程学院, 上海 200030)
  • 收稿日期:2014-06-09
  • 基金资助:

    高等学校全国优秀博士学位论文作者专项资金项目(200131)资助

Method for Selection of Temperature Key Points Based on Thermal Error Sensitivity Images and Genetic Optimization

ZHAO Haitao1,FENG Wei1,ZHOU Hai1,YANG Jianguo2   

  1. (1. School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu China; 2. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China)
  • Received:2014-06-09

摘要:

摘要:  采用有限元法仿真计算了数控车削中心主轴箱的瞬态温度场分布及相应热变形位移,根据热误差敏感度导出了主轴箱的热误差敏感度图;运用小波图像压缩技术提取了512个有限单元结点作为侯选温度关键点;根据遗传优化算法原理,提出了流程图式的目标函数,并在Matlab软件中以M文件的形式编写目标函数,同步实现了温度关键点的选择以及与之匹配的热误差模型的建立.通过在数控车削中心的验证实验结果表明,根据优化关键点所建立的数控车削中心主轴箱热误差模型的计算精度较高.

关键词: 热误差敏感度, 数控车削中心,  , 图像压缩, 温度关键点, 遗传优化

Abstract:

Abstract: The transient temperature fields and corresponding thermal deformations of a computer numerical control (CNC) turning center headstock were simulated using the finite element method. Based on the concept of thermal error sensitivity, the sensitivity images of thermal errors of the turning center headstock were derived from the simulation results. 512 candidate temperature key points were extracted from finite element nodes by using the wavelet image compression technique. According to the principle of the genetic optimization algorithm, the optimization object function was expressed as a flowchart which could be programmed as an Mfile in Matlab. The selection of temperature key points and building matching thermal error models were simultaneously realized. The validation experimental results on the turning center show that the fitting precision of thermal error models built on optimized temperature key points is better than that on arbitrarily selected temperature measuring points.

Key words: thermal error sensitivity, computer numerical control (CNC) turning center, image compression, temperature key points, genetic optimization

中图分类号: