上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (02): 196-201.

• 自动化技术、计算机技术 • 上一篇    下一篇

视频帧内运动目标复制-粘贴篡改检测算法

张璐波a,孙锬锋a,b,c,蒋兴浩a,b,c   

  1. (上海交通大学a.电子信息与电气工程学院; b. 信息内容分析技术国家工程实验室;c. 上海市信息安全综合管理技术研究重点实验室, 上海 200240)
  • 收稿日期:2014-06-11 出版日期:2015-02-28 发布日期:2015-02-28
  • 基金资助:

    国家自然科学基金(61272249,61272439),高等教育博士点专项基金(20120073110053),上海市科委国际合作项目(12510708500)资助

Moving Targets CopyMove Forgery Detection in Video Sequences

ZHANG Luboa,SUN Tanfenga,b,c,JIANG Xinghaoa,b,c   

  1. (a. School of Electronic Information and Electrical Engineering; b. National Engineering Laboratory on Information Content Analysis Techniques; c. Shanghai Key Laboratory of Administration Technologies for Information Security, Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2014-06-11 Online:2015-02-28 Published:2015-02-28

摘要:

摘要:  提出了一种基于Lucas_Kanade(LK)光流及运动目标预检机制的视频帧内运动目标复制粘贴篡改检测算法.该算法分为运动目标检测与跟踪、运动序列筛选和空间域匹配3个阶段.运动目标检测与跟踪利用背景建模算法和卡尔曼滤波器进行检测和跟踪;运动序列的筛选采用LK方法得到各运动序列的光流值,并计算其相关性来选择可能存在篡改的视频帧序列;空间域匹配利用尺度不变特征变换算法对上一阶段得到的对应运动序列逐帧进行匹配,过滤正常的视频序列.实验结果表明,本文算法能有效检测同源视频中针对运动目标的多帧复制粘贴篡改.

关键词: 视频篡改检测, 运动目标检测跟踪, 光流算法, 尺度不变特征, 数字视频取证

Abstract:

Abstract: In this paper, a novel technique to detect moving targets copy-move forgery in video sequences based on LK optical flow and the pre-screening mechanism of moving targets was proposed. The proposed scheme is a coarse-to-fine approach and composed of moving targets detection and tracking, candidate motion sequences selection, and spatial matching. In the pre-processing round, the visual background extractor (ViBe) mechanism and Kalman filter were used to detect and tracking moving objects. To screen duplicated candidates in the temporal domain, the optical flow features in each motion sequences were obtained using the Lucas_Kanade algorithm and calculate their correlation. To evaluate the similarity of image content, the scale invariant feature transform (SIFT) algorithm was used to measure spatial correlation of each corresponding frame between the motion sequences. The experimental results show that the proposed scheme can detect moving targets copy-move forgery well in homologous video.
Key words:

Key words:  video tampering detection, moving objects detection and tracking, optical flow algorithm, scale invariant feature, digital video forensics

中图分类号: