上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (1): 154-158.

• 其他 • 上一篇    

城市避震疏散场所选址的时间满意覆盖模型

王威,苏经宇,马东辉,郭小东,王志涛
  

  1. (北京工业大学 建筑与城市规划学院, 抗震减灾研究所, 北京 100124)
     
  • 收稿日期:2012-12-03
  • 基金资助:
    国家十二五科技支撑计划项目(2011BAK07B01, 2011BAJ08B03, 2011BAJ08B05), 国家自然科学基金项目(51208017), 北京市博士后工作经费项目(2012ZZ17),中国博士后科学基金项目(2011M500199)资助
     

Urban Emergency Shelter Locations for Earthquake Disaster Using Time-Satisfaction-Based Maximal Covering Location Model

WANG Wei,SU Jingyu,MA Donghui,GUO Xiaodong,WANG Zhitao
  

  1. (College of Architecture and Urban Planning; Institute of Earthquake Resistance and Disaster Reduction, Beijing University of Technology, Beijing 100124, China)
  • Received:2012-12-03

摘要:

针对城市避震疏散场所选址和避难人员分配的问题,研究了综合多准则决策的避震疏散场所优化方案的时间满意覆盖模型.通过综合考虑备选避震疏散场所的条件,采用优劣解距离方法进行多准则决策,对可行方案进行综合评价;在建立避震疏散场所服务需求点的时效性评价函数的基础上,基于最大覆盖选址模型和“部分覆盖”思想,建立了有限设置避震疏散场所的综合多准则与时间满意覆盖模型,并给出了基于遗传粒子群的模型优化求解算法.实例分析结果表明,该算法具有较好的有效性.

 
 

关键词: 疏散场所, 时间满意覆盖模型, 选址, 多准则决策, 优劣解距离法

Abstract:

A multi-criteria integrated time-satisfaction-based maximal covering location model of urban emergency shelter locations for earthquake disaster was developed to identify shelter locations and evacuee distributions. First, considering the various conditions of an integrated considering options for urban emergency shelter locations for earthquake disaster, the TOPSIS method was used for the multiple criteria decision-making and comprehensive evaluation of the possible options. Secondly, after investigation on the time-satisfaction function of the supported units, a multi-criteria integrated timesatisfactionbased maximal covering location model based on the maximal covering location model and the partial covering idea was built. The optimal objective of the model was to maximize the satisfaction of both the support department and the supported units. Finally, a hybrid intelligent algorithm based on the genetic algorithm and particle swarm optimization was provided to solve the model. The computational results proved the effectiveness of the algorithm.

中图分类号: