上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (05): 647-652.

• 自动化技术、计算机技术 • 上一篇    下一篇

基于快速留一交叉验证的核极限学习机在线建模

张英堂,马超,李志宁,范红波
  

  1. (军械工程学院 车辆与电气工程系, 石家庄 050003)
     
     
  • 收稿日期:2013-06-13
  • 基金资助:

    军内科研项目资助

Online Modeling of Kernel Extreme Learning Machine Based on Fast Leave-One-Out CrossValidation

ZHANG Yingtang,MA Chao,LI Zhining,FAN Hongbo
  

  1. (Department of Vehicle and Electric Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)
  • Received:2013-06-13

摘要:

提出了一种基于快速留一交叉验证(FLOO-CV)的在线核极限学习机(OKELM),以逐次增加新样本与删除旧样本的方式进行在线训练;设计了一种无需人为设定、能够根据系统过程特性自适应改变的 FLOO-CV预测误差阈值,根据误差阈值仅引入预报误差较大的样本对模型进行更新,以提高模型的稀疏性和泛化能力;利用Hermitian矩阵求逆引理实现了对网络输出权值的递推求解,减小了在线存储空间和计算时间.经混沌时间序列预测和连续搅拌釜式反应器的过程辨识结果表明,相比于离线核极限学习机、无稀疏策略的在线核极限学习机和在线序贯极限学习机,OKELM具有更快的计算速度和更高的学习精度.
 
 

关键词: 核方法, 极限学习机, 快速留一交叉验证

Abstract:

A novel algorithm based on fast leave-one-out cross-validation was proposed, named as online kernel extreme learning machine (OKELM). Online modeling was accomplished by importing the latest training sample and discarding the oldest training sample. An adaptive FLOO-CV prediction error-based threshold without any manual work was used to enhance the sparsity and generalization ability of the model by only introducing the samples with larger predictive error. The output weights of the OKELM were determined recursively based on Hermitian formula. Thus, the online storage space and calculation time was reduced. Numerical experiments on chaotic time series prediction and identification of a continuous stirred tank reactor show that the OKELM has faster calculation speed and higher learning accuracy in comparison with off-line kernel extreme learning machine, unsparsity online kernel extreme learning machine and on-line sequential extreme learning machine.
 

Key words: kernel method, extreme learning machine (ELM), fast leave-one-out cross-validation (FLOO-CV)

中图分类号: